Computational PDEs, Fall 2021
Pseudo-spectral solver for the two-dimensional Navier-Stokes equations

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

Oct 26th, 2021
Due on Sunday November 21st 2021

The Taylor vortex

2 — vot 2 — Vot
S <w> “in (%) (1)

2 — Vot 2m(y — vot

n o= —e 6w/l {cos (M>+cos (Mﬂ (3)

is a well-known exact solution of the unforced Navier-Stokes equation
ov+v-Vv=-Vr+ Vi, (4)

in two dimensions for a periodic domain of size L. x L. You can set vg = 1, L = 1 and p = 0.05 for
this homework. Note that to capture the non-zero mean of the velocity in the vorticity-stream function
formulation you need to keep track of it separately and add it “by hand”,

V= VJ_'(ﬂ—F'Uo.

This is because momentum is conserved and thus vy = v(k = 0) is constant in time and not something
to be solved for but given in the initial condition.

Note: You can easily make the velocity less smooth by increasing the wavenumber and replacing, for
example, cos (2m(x — vot)/L) with cos (k - 2m(x — vot) /L) where k is an integer larger than one (you will
have to adjust the exponential decay accordingly). Alternatively, you can make your periodic domain be
of size (kL) x (kL) without having to change the Taylor vortex formula. Either way, it is important to
write code that is flexible and where things like length of domain are not hard-wired in any way.

For temporal integration of ODEs with a stiff linear term and a non-stiff nonlinear term,

9 _46+8(3).)
dt
you can use either IMEX or exponential integrators; just picking one is sufficient for this assignment, but
do note that your choice can have strong impacts on stability in the limit of no viscosity or no diffusion
(for part 2 of this homework). Spectral deferred corrections would be the best method but this is more
for a final project than a homework.

For example, one integration method you can use is the SBDF2 scheme with time step size At,

~n+1 4 ~n 1 +n-1 2At ~n+1 2At Am ~n—1
L B B) (),
R R VAR (-1 b
see also Eq. (35) in the paper of Cox and Matthews (CM) where it is called the AB2BDF2 scheme; more

IMEX options are given in the lecture notes. Another option for a temporal integrator is the exponential
1

time differencing trapezoidal RK2 method,

QAan,* :eAAt[ﬁn + A (eAAt — I) B ((%n) (predictor)
$n+1 ZqAﬁnH’* + A2 (eAAt _AIt_ AAt) <B (qAan’*) - B (éﬁn)) (corrector),

see also Eqgs. (204-22) in the paper by CM. Note that direct implementation of these formulas can suffer
from roundoff errors for small A¢, more precisely, for small |\, | At where Ay, is the eigenvalue of A with
smallest magnitude; make sure this is not the case or find a way to avoid catastrophic cancellation (e.g., by
using Taylor series). On the course homepage I have linked a code by A. K. Kassam and L. N. Trefethen that
solves KAV with fourth-order ETDRK4 method, along with the paper that explains how to avoid roundoff
problems. You can try this method/code and compare to see how much improvement you can get from
the higher-order scheme; it should be easy to just extract the temporal integrator from the sample code.

Note: Make sure to write the code in a way that avoids evaluating things more than once. For example,

evaluate B <$n> only once per time step and store and reuse between the predictor and the corrector

or between successive time steps. Further, observe that if A is constant many things can be computed
once and only once at the beginning (and that computation is super cheap if done right).

1 Velocity Solver

Write a pseudo-spectral solver for the two-dimensional Navier-Stokes equations in the vorticity-stream
formulation, as we discussed in class. Choose a temporal integrator and discuss your choice. If you don’t
want to deal with unmatched modes, it is OK to use grids that are of odd size, for example, powers of
three instead of powers of two.

For evolution PDEs, we are always really concerned with combined spatio-temporal error. For this
assignment, temporal error will dominate so the order is controlled by the temporal integrator. I suggest
approaching this in the following way: First, figure out how many spatial points you need so that the error
is dominated by the temporal error. Then, keep the number of spatial points fixed and only change the
time step size to estimate a temporal order of accuracy and report that.

Important note: For pseudospectral methods, the solution you get from the code is actually a function
not a vector (sum of basis functions where the vector is the set of coefficients in front of the basis functions),
in this specific case, a trigonometric polynomial. So when talking about solution/error we are talking
about a solution/error function, not a solution/error vector. Numerically, the best way to estimate/plot
the solution or the error is to evaluate the trigonometric polynomial on a refined grid (say 1024% points)
using the FFT, and then plot or compute error norms using that fine grid. For this, you will need the
equivalent of the Matlab function interpft but for two dimensions; best to write your own but there are
also various codes online, just google interpftn (note that some codes may only work for even/odd grids).

1.1 Taylor Vortex

Using the Taylor vortex as initial condition, solve the NS equations from time ¢ = 0 to time ¢t =T = 0.25
and compare the numerical solution to the exact solution. Discuss (both numerically and analytically)
the order of accuracy of the scheme you developed, as well as the computational cost. What would be
different (better, worse) if you used a finite-volume spatial discretization?

Note: Spectral methods converge very rapidly for smooth problems to essentially roundoff error. Therefore,
start with small grid sizes and slowly increment grid sizes in increments of O(1) (e.g., by 2 or 4 if you
want to stay even or odd), and not by doubling the grid as for low-order methods.

1.2 Vortices

To create a more interesting test for pseudo-spectral codes, set L. = 27 and initialize the vorticity field
with a superposition of three Gaussian peaks (i.e., three “vortices”):

w(z,y;t =0) =exp (=5 ((z — 7)° + (y — 37/4)%)) + exp (=5 (v — 7)> + (y — 5b7/4)?)) . (6)

a %exp (_g ((z —5m/4)° + (y — 57T/4)2))
2

Note that this is not strictly speaking a periodic function but it is sufficiently close to one due to the rapid
decay of the Gaussian peaks. To get an actual periodic vorticity each peak would have to periodically
replicated on an infinite square grid, for example, for the first peak, use

w(z,y;t=0) = Z exp (=5 ((z — (7 + iL))? + (y — (3m/4 +4L))%)),

1,j=—M

where in practice setting M = 1 (i.e., only including 9 copies of the peak) should be more than sufficient
to get a function that is periodic to roundoff tolerance.

1. Confirm that your code computes the right-hand side of the PDE (this implies also the semi-discrete
ODEs) for vorticity (0;w = rhs) to spectral accuracy; it is important here to check the viscous and the
advective (nonlinear) term separately, since one may be much larger than the other depending on the
Reynolds number. How many grid points do you need to get the rhs to about 6 digits of accuracy?
Try with and without anti-aliasing and comment on your observations.

Note: Since reasonable grid sizes can give essentially exact (to within roundoff) results, it is OK to use
the solution on the finest grid as a reference solution. Keep the grid size modest and increase it slowly;
going to very large grid sizes can lead to increased roundoff error due to multiplications by k or k2.

2. Apply your temporal integrator and estimate empirically the temporal order of accuracy of your method
at time T' = 0.25. How accurate is your answer for the velocity at the final time, in some norm of choice?

3. [Optional but encouraged] Make a movie of your solution, for example, a vector plot of the velocity.
Try also a 10 times smaller viscosity and 10 times longer run, i.e., play a bit with the Reynolds number.
Please do not email large movies with your solutions, put them on a shared drive.

2 Advection-Diffusion Solver

Solve also a forced scalar advection-diffusion equation for the concentration c(r,t) a passive tracer,
Oic+v-Ve=DVc+ f(rt). (7)

Here the velocity v (x,y,t) may come from the numerical solution in the first part of this homework or
be specified analytically. Choose which case you assume for this problem (explain in the report what you
did); to get a more realistic experience and to challenge yourself, solve for the velocity together with the
concentration. In many practical applications the concentration can couple back into the velocity equation
but here we do not consider this case; if there was a coupling term that term would be treated explicitly
(if you want a coding challenge try to write code that can handle bidirectional ¢ — v coupling, even though
it is not present in this specific example).

1. If you set D = p and f = —0,7 then ¢ = v, from the Taylor vortex is a solution of (7). Use this to
validate your advection-diffusion solver as you would use a manufactured solution.
2. Now set f =0 and D = 0 (pure advection) and start with the initial condition

c(z,y;t=0) = [sin <7T—L$> sin (%yﬂ 100. (8)

First, set v (z,y,t) = vo = const and advect the peak to time ¢ = 1, when it should come back to its
starting position unchanged. Try a few grid sizes (explain how you chose them) and comment on how
well the method performs. Examine numerically and/or theoretically what the stability limit is for the
time step size.
Note: Do not use the fact that velocity is constant in your numerical method, unless whatever you do also
works for part 1 above (i.e., you are only allowed to use here code that you validated in part 1 above).
3. [Optional but encouraged] Try the initial conditions (6) and (8) and observe what happens to the peak
as it is advected around by the divergence-free flow for different grid resolutions (best done using a
movie) for D = 0; observe that the velocity decays exponentially so after some time the peak should
reach a steady final state. Comment on your observations.

3

