Two Dimensions

Regular grids

- Now $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbf{R}^{n}$ is a multidimensional data point. Focus on two-dimensions (2D) since three-dimensions (3D) is similar.
- The easiest case is when the data points are all inside a rectangle

$$
\Omega=\left[x_{0}, x_{m_{x}}\right] \times\left[y_{0}, y_{m_{y}}\right]
$$

where the $m=\left(m_{x}+1\right)\left(m_{y}+1\right)$ nodes lie on a regular grid

$$
\mathbf{x}_{i, j}=\left\{x_{i}, y_{j}\right\}, \quad f_{i, j}=f\left(\mathbf{x}_{i, j}\right)
$$

- Just as in 1D, one can use a different interpolation function $\phi_{i, j}: \Omega_{i, j} \rightarrow \mathbb{R}$ in each rectangle of the grid (pixel)

$$
\Omega_{i, j}=\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right] .
$$

Bilinear Interpolation

- The equivalent of piecewise linear interpolation for 1D in 2D is the piecewise bilinear interpolation

$$
\phi_{i, j}(x, y)=(\alpha x+\beta)(\gamma y+\delta)=a_{i, j} x y+b_{i, j} x+c_{i, j} y+d_{i, j} .
$$

- There are 4 unknown coefficients in $\phi_{i, j}$ that can be found from the 4 data (function) values at the corners of rectangle $\Omega_{i, j}$. This requires solving a small 4×4 linear system inside each pixel independently.
- Note that the pieces of the interpolating function $\phi_{i, j}(x, y)$ are not linear (but also not quadratic since no x^{2} or y^{2}) since they contain quadratic product terms $x y$: bilinear functions.
This is because there is not a plane that passes through 4 generic points in 3D.

Piecewise-Polynomial Interpolation

- The key distinction about regular grids is that we can use separable basis functions:

$$
\phi_{i, j}(\mathbf{x})=\phi_{i}(x) \phi_{j}(y) .
$$

- Furthermore, it is sufficient to look at a unit reference rectangle $\hat{\Omega}=[0,1] \times[0,1]$ since any other rectangle or even parallelogram can be obtained from the reference one via a linear transformation.
- Consider one of the corners $(0,0)$ of the reference rectangle and the corresponding basis $\hat{\phi}_{0,0}$ restricted to $\hat{\Omega}$:

$$
\hat{\phi}_{0,0}(\hat{x}, \hat{y})=(1-\hat{x})(1-\hat{y})
$$

- Generalization of bilinear to 3D is trilinear interpolation

$$
\phi_{i, j, k}=a_{i, j, k} x y z+b_{i, j, k} x y+c_{i, j, k} x z+d_{i, j, k} y z+e_{i, j, k} x+f_{i, j, k} y+g_{i, j, k} z+h_{i, j, k}
$$

which has 8 coefficients which can be solved for given the 8 values at the vertices of the cube.

Bilinear basis functions

Bilinear basis function $\phi_{0,0}$ on reference rectangle

Bilinear basis function $\phi_{3,3}$ on a 5×5 grid

Bicubic basis functions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles. Similarly tetrahedral meshes in 3D.

Basis functions on triangles

- For irregular grids the x and y directions are no longer separable.
- But the idea of using basis functions $\phi_{i, j}$, a reference triangle, and piecewise polynomial interpolants still applies.
- For a piecewise constant function we need one coefficient per triangle, for a linear function we need 3 coefficients (x, y, const), for quadratic 6 ($x, y, x^{2}, y^{2}, x y$, const), so we choose the reference nodes:

Fig. 8.8. Local interpalation motes on \hat{i} for $k=1$ (ieft). $k-1$ (anter), $k=\geq$ (right)

