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Higher Dimensions
Regular grids

@ Now x = {xq,...,x,} € R" is a multidimensional data point. Focus
on two-dimensions (2D) since three-dimensions (3D) is similar.

@ The easiest case is when the data points are all inside a rectangle
Q = [x0, Xm.] X [y0, ¥m,]
where the m = (my + 1)(m, + 1) nodes lie on a regular grid
xij = {xiyj},  fij=fxij).

@ Just as in 1D, one can use a different interpolation function
¢ij: Q;j — R in each rectangle of the grid (pixel)

Qij = [xi, xit1] % v}, yj+l-
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Higher Dimensions
Bilinear Interpolation

@ The equivalent of piecewise linear interpolation for 1D in 2D is the
piecewise bilinear interpolation

¢ij(x,y) = (ax+ B) (vy +6) = aijxy + bijx + cijy + dij.

@ There are 4 unknown coefficients in ¢;; that can be found from the 4
data (function) values at the corners of rectangle Q; ;. This requires
solving a small 4 x 4 linear system inside each pixel independently.

o Note that the pieces of the interpolating function ¢; ;j(x,y) are not
linear (but also not quadratic since no x2 or y?) since they contain
quadratic product terms xy: bilinear functions.

This is because there is not a plane that passes through 4 generic
points in 3D.
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Higher Dimensions

Piecewise-Polynomial Interpolation

@ The key distinction about regular grids is that we can use separable
basis functions:
¢ij(x) = $i(x)9;(y).
@ Furthermore, it is sufficient to look at a unit reference rectangle

Q = [0,1] x [0, 1] since any other rectangle or even parallelogram
can be obtained from the reference one via a linear transformation.

@ Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis qbo o restricted to {:

$oo(%,9) =(1=%)(1-9)
@ Generalization of bilinear to 3D is trilinear interpolation
Gijk = aijkXyZ+bij,kxy+cijkxz+d;jkyz+ejjkx+1ijky+8ijkz+hij

which has 8 coefficients which can be solved for given the 8 values at
the vertices of the cube.
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Higher Dimensions

Bilinear basis functions

Bilinear basis function @, | on reference rectangle
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Bilinear basis function ¢, , on a 55 grid
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Higher Dimensions

Bicubic basis functions

Bicubic basis function , , on a 5x5 grid
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Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.
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Higher Dimensions
Basis functions on triangles

@ For irregular grids the x and y directions are no longer separable.

@ But the idea of using basis functions ¢; ;, a reference triangle, and
piecewise polynomial interpolants still applies.

@ For a piecewise constant function we need one coefficient per triangle,
for a linear function we need 3 coefficients (x, y, const), for quadratic
6 (x,y,x?,y?, xy,const), so we choose the reference nodes:
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