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Trigonometric Orthogonal Polynomials

Trigonometric Orthogonal Polynomials
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Trigonometric Orthogonal Polynomials

Periodic Functions

@ Consider now interpolating / approximating periodic functions
defined on the interval | = [0, 27]:

Vx  f(x+27m) = f(x),

as appear in practice when analyzing signals (e.g., sound/image
processing).

@ Also consider only the space of complex-valued square-integrable
functions L3 _,

2
Vfel? . (f,f)=|f|? :/ 1F(x)|? dx < oo.
0

@ Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.

@ Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

dr(x) = ™ = cos(kx) + isin(kx), k=0,+1,+2,...
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Trigonometric Orthogonal Polynomials

Fourier Basis Functions

dr(x) =e™, k=0,+1,42,...

@ It is easy to see that these are orhogonal with respect to the

continuous dot product
2T

27
Gnd) = | di()dh(x)dx = /0 exp [i(j — K)x] dx = 2m5;

x=0
@ The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L%W, le.,

0
VEels, : flx)= ) HKe™,
k=—00
where the Fourier coefficients can be computed for any frequency
or wavenumber k using:

f = (F,0) _ 1 /% f(x)e@dx.

27 _27'('. 0
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Trigonometric Orthogonal Polynomials

Truncated Fourier Basis

@ For a general interval [0, X] the discrete frequencies are
/\ 2
Y@ KJ:O,:':].,:':2,...

@ For non- perloglc functions one can take the limit X — oo in which
case we get continuous frequencies.

@ Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,

{k(Nl)/2 0,...,(N=1)/2 if Nis odd
k@ N/2—1/y< if N is even,

and for simplicity we focus on N odd.
@ The least-squares spectral approximation for this basis is:

(N—1)/2

F)mp(x)= > fie™

k=—(N—1)/2

A. Donev (Courant Institute) FFT 1/29/2019 11 / 40



Trigonometric Orthogonal Polynomials

Discrete Dot Product

@ Now also discretize a given function on a set of N equi-spaced nodes

2
Xj:jhwherehzﬁw

where j = N is the same node as j = 0 due to periodicity so we only
consider N instead of N 4 1 nodes.

@ We also have the discrete dot product between two discrete
functions (vectors) f; = f(x;):

N—1
f-g=h) fig
j=0

@ The discrete Fourier basis is discretely orthogonal

Qi - Gpr = 2o g
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Trigonometric Orthogonal Polynomials

Proof of Discrete Orthogonality

The case kK = k' is trivial, so focus on

¢k-¢k/:Ofork7ék/

Zexp (ikx;) exp (—ik'x;) Zexp [/ (AK) x;] = Z [exp (ih (Ak))P
J
where Ak = k — k’. This is a geometric series sum:

1—ZN

—0if k£ K

Py - Py =

since z = exp (ih (Ak)) # 1 and
zNV = exp (ihN (Ak)) = exp (2mi (Ak)) = 1.
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Trigonometric Orthogonal Polynomials

Discrete Fourier Transform

@ The Fourier interpolating polynomial is thus easy to construct

(N—1)/2

wy= Y. e

k=—(N—1)/2
where the discrete Fourier coefficients are given by

N—-1

(N f-¢ 1 -
1= = 5 3 e i

e Simplifying the notation and recalling x; = jh, we define the the
Discrete Fourier Transform (DFT):

Aﬁ %?M 14 fexp<_27;\//jk>
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Trigonometric Orthogonal Polynomials

Discrete spectrum

@ The set of discrete Fourier coefficients f is called the discrete
spectrum, and in particular,

2 /\/\*
:fk k

S = | A

is the power spectrum which measures the frequency content of a
signal.

o If f is real, then f satisfies the conjugacy property

aN

s *
f—k: k9

so that half of the spectrum is redundant and fo is real.

@ For an even number of points N the largest frequency k = —N/2
does not have a conjugate partner. It is special and must be treated
with care.
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Trigonometric Orthogonal Polynomials

Fourier Spectral Approximation

Tl
e Discrete Fourier Transform (DFT): \f(@ - % 5£L e

N—-1

Forward f — f - = 1 fj exp ( 27TU/<>
_j:O
(N-1)/2 2rijk
A . T
Inverse f — @ f(x;) ~ ¢(x;) = Z fic exp ( N )
k=—(N-1)/2

@ There is a very fast algorithm for performing the forward and
backward DFTs (FFT).

@ There is different conventions for the DFT depending on the

interval on which the function is defined and placement of factors of
N and 2.

Read the documentation to be consistent!
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Trigonometric Orthogonal Polynomials

Spectral Convergence (or not)

@ The Fourier interpolating polynomial ¢(x) has spectral accuracy,
I.e., exponential in the number of nodes N

|£(x) = ¢l ~ e

for analytic functions (more details shortly).
@ Specifically, nice functions exhibit rapid decay of the Fourier

coefficients with k, e.g., exponential decay ‘f‘k‘ ~ eIkl

@ Discontinuities cause slowly-decaying Fourier coefficients, e.g., power
law decay |1A‘k| ~ k! for jump discontinuities.
@ Jump discontinuities lead to slow convergence of the Fourier series for

non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

N1 at points away from jumps

1 (x) = o(x)|| ~ {

const. at the jumps themselves
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon

Approximation of a square wave timing signal (f, = 20 MHz)
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon

Reconstruction of the periodic square waveform with 1,3, 5,7, 9 sinusoids
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Trigonometric Orthogonal Polynomials

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, ...
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Approximation Theory

Approximation Theory
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Approximation Theory

Trigonometric projection vs. interpolation

@ | will temporarily switch to notation in paper on periodic chebfun in
paper of Trefethen et al, assuming odd number of points for
simplicity:

2
f(t €[0,2n]) discretized with N =2n + 1 points t,, = 7erm

n
Trigonometric projection: f,(t) = Z cre'
k=—n

n
Trigonometric interpolant: p,(t) = Z Ere'™t.
k=—n

@ Aliasing means that one cannot distinguish two different Fourier
modes on a given grid:

exp (iktm) = exp (i (k + jN) tm)
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Approximation Theory
Poisson Summation Formula

@ Observe that because of aliasing:

N n

Q( \Z f(t Z cpefktm — Z i Ck+jNei(k+jN)tm
f/\’\ \ A\_ 4,_ »—6-> k=—o0 k=—nj=—o0

.\ n

G
_ ) ikt
10 ~~—~—\‘}§ =D | D ok | "

k=—n \j=—0o0

n
Recall: p, (tm) = Z & et

k=—n

@ Since the trigonometric interpolant is unique, we get Poisson’s

summation formula _— C«lr./)
il 4@ > ¢ @

_]_ (0. @) i
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Approximation Theory
The importance of smoothness

e Total variation of differentiable function (can be generalized):

27
TV[f] = / If'(x)| dx, denote V =TV {f('ﬂ.
0

@ We have two cases where we have nice error estimates:
o If fis v > 0 times differentiable, then

vV

o ——
S or | k|"H!

which can be proved by integrating ¢, = (2r) fOZW f(x)e "™ dx by

parts v 4+ 1 times.

o If f(t) is analytic in a half-strip around the real axis of half-width «
and bounded by |f (t)| < M, then

k| < Me—lkl

which can be proved by shifting the contour of integration above or
below the real line by «.
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Approximation Theory

Approximation error: Differentiable

@ If fis v > 1 times differentiable then

If = falloe = || > cxe™|| < Dl

|k|>n o |kI>n
oo
V R V4
<2 — =2 —dk
- kjg;12ﬂk”+1 ]C 2mkv+l

@ Performing the integral we get that if f is v > 1 times differentiable,

then
V4

v nY

If = falloo <

oo —

@ You can replace f, with p, if you multiply the r.h.s. by 2 to account
for the additional aliasing error.
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Approximation Theory

Approximation error: Analytic

o If f (t) is analytic in the half strip then

2Me—a"

- (geometric series sum)
e J—

oo
If = follo <2 ) Me k=
k=n-+1

@ You can replace f, with p, if you multiply the r.h.s. by 2 to account
for the additional aliasing error.

@ The Fourier interpolating trigonometric polynomial is spectrally

accurate and a really great approximation for (very) smooth functions.
L

'J\Kl\/tm 2
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Approximation Theory
Trapezoidal Rule

@ Consider using the trapezoidal rule to approximate a periodic
integral:

4V
Iy — 1| < N
e If £ (t) is analytic in the half strip then trapezoidal rule is spectrally
accurate:
| | 4t M
In=1IT= N1
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Fast Fourier Transform

Fast Fourier Transform
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Fast Fourier Transform

DFT

@ Recall the transformation from real space to frequency space and
back:

N—1
A 1 2mitk N—1 N—1
Y fk— exp( ij )7 k:—( )7.”’( )

'(L,K??/ JZO
8 (N-1)/2

A 2Tk ,
fof: fi= ) fkexp< N), j=0,....N—1
k=—(N—1)/2

@ We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k =0,..., N:

M

iy fee 2rijk
Forward f - f: f,=— zj-exp(— /\IJ>’ k=0,....,.N—1

Inverse f — f: 6-:
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Fast Fourier Transform

FFT

@ We can write the transforms in matrix notation:

.1
=t 0N by
f:—NUTVf, = ?‘/

where the unitary Fourier matrix (fft(eye(/N)) in MATLAB) is an
N x N matrix with entries

(/V) w/ wy = e 2mi/N.

e A direct matrix-vector multiplication algorithm therefore takes O(/N?)
multiplications and additions.

@ Is there a faster way to compute the non-normalized

N—-1
fo=) fiwh ?
j=0
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Fast Fourier Transform

FFT

@ For now assume that N is even and in fact a power of two, N = 2".
@ The idea is to split the transform into two pieces, even and odd

points:
N/2—1 . N/2—1 _
Sofwn D k= D By (@R) ek X A (@R
i=2j’ J=2j'+1 J'=0 J'=0
@ Now notice that
W2 = e~ TiIN — g=2mi/(N/2) _ w2

@ This leads to a divide-and-conquer algorithm:

N/2-1 | N/2-1 |
fo= D Rywyptwh D Riawy,
=0 j'=0

fe = Unf = (Up jafeven + wiyUn jofoda)
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Fast Fourier Transform
FFT Complexity

@ The Fast Fourier Transform algorithm is recursive:

FFTn(f) = FFTn (fFeven) + WL FFTn (fodd),
) 2

where wy = w,’{, and [J denotes element-wise product. When N =1
the FFT is trivial (identity).

@ To compute the whole transform we need log, (/) steps, and at each
step we only need N multiplications and N /2 additions at each step.
@ The total cost of FFT is thus much better than the direct method's
O(N?): Log-linear
O(Nlog N).
@ Even when N is not a power of two there are ways to do a similar
splitting transformation of the large FFT into many smaller FFTs.

@ Note that there are different normalization conventions used in
different software.
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Fast Fourier Transform
In MATLAB

@ The forward transform is performed by the function f = fft(f) and
the inverse by f = fft(f). Note that ifft(fft(f)) = f and f and f may
be complex.

@ In MATLAB, and other software, the frequencies are not ordered in
the “normal” way —(N — 1)/2 to +(N — 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny” ordering is

N—-—1 N-1

0,1,...,(N-1)/2, — - 1,...,—1.
)y 7( )/7 2 Y 2 —|_7 J

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

@ The function fftshift can be used to order the frequencies in the
“normal” way, and ifftshift does the reverse:

f = ffshift(fft(f)) (normal ordering).
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Fast Fourier Transform

FFT-based noise filtering (1)

Fs = 1000; % Sampling frequency
dt = 1/Fs; % Sampling interval

L = 1000; % Length of signal

t = (0:L—1)*dt; % Time vector
T=Lxdt: % Total time interval

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
X = 0.7*xsin(2xpi*b0xt) + sin(2xpi*x120*t);
y = x + 2xrandn(size(t)); % Sinusoids plus noise

figure (1); clf;

plot(t(1:100),y(1:100),'b——="); hold on

title('Signal Corrupted with Zero—Mean Random Noise ")
xlabel ("time")
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Fast Fourier Transform

FFT-based noise filtering (2)

if(0)
N=(L/2)%2; % Even N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2%pi/Tx [0:N/2—-1, —N/2: —1];
% Normal ordering:
f_normal = 2xpi/Tx [-N/2 : N/2-1];
else
N=(L/2)*2—-1; % Odd N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2%pi/Tx [0:(N-1)/2, —(N-1)/2:—-1];
% Normal ordering:
f_normal = 2xpi/Tx [—(N=1)/2 : (N—-1)/2];
end
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Fast Fourier Transform

FFT-based noise filtering (3)

figure (2); clf; plot(f_funny, abs(y_hat), 'ro’); hold

y_hat=fftshift(y_hat);
figure (2); plot(f_normal, abs(y_hat), 'b—");

title (' Single—Sided Amplitude Spectrum of y(t)’)
xlabel (' Frequency (Hz)')
ylabel (' Power")

y_hat(abs(y_hat)<250)=0; % Filter out noise
y_filtered = ifft(ifftshift(y_hat));
figure(1l); plot(t(1:100),y_filtered (1:100),'r—")
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Fast Fourier Transform

FFT results

Single-Sided Amplitude Spectrum of y(t)
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Fast Fourier Transform
Multidimensional FFT

@ DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

y 1Nx . . .
- 2701 (Jckx + Jy ky)
= T zzwexp[ :
Jy=0 Jjx=
N,—1
27‘(’/ K 1 < 21l k
ik, = Z exp (=== ) |2 D fep (-
N N, = N
—

@ For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:

f — ~7:row (:Fcol (f))

@ The cost is N, one-dimensional FFTs of length N, and then N
one-dimensional FFTs of length N, :

NN, log Ny + N, N, log N, = NN, log (NxN,) = Nlog N

1/29/2019 38 / 40

A. Donev (Courant Institute)



Conclusions

Conclusions
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Conclusions

Conclusions/Summary

@ Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

@ The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

@ Functions with discontinuities are not approximated well: Gibbs
phenomenon.

@ The Discrete Fourier Transform can be computed very efficiently
using the Fast Fourier Transform algorithm: O(Nlog N).

A. Donev (Courant Institute) 1/29/2019 40 / 40



