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Trigonometric Orthogonal Polynomials
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Trigonometric Orthogonal Polynomials

Periodic Functions

Consider now interpolating / approximating periodic functions
defined on the interval I = [0, 2⇡]:

8x f (x + 2⇡) = f (x),

as appear in practice when analyzing signals (e.g., sound/image
processing).
Also consider only the space of complex-valued square-integrable
functions L

2
2⇡,

8f 2 L
2
w : (f , f ) = kf k2 =

Z 2⇡

0
|f (x)|2 dx < 1.

Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.
Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

�k(x) = e
ikx = cos(kx) + i sin(kx), k = 0,±1,±2, . . .
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Trigonometric Orthogonal Polynomials

Fourier Basis Functions

�k(x) = e
ikx , k = 0,±1,±2, . . .

It is easy to see that these are orhogonal with respect to the
continuous dot product

(�j ,�k) =

Z 2⇡

x=0
�j(x)�

?
k(x)dx =

Z 2⇡

0
exp [i(j � k)x ] dx = 2⇡�ij

The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L

2
2⇡, i.e.,

8f 2 L
2
2⇡ : f (x) =

1X

k=�1
f̂ke

ikx ,

where the Fourier coe�cients can be computed for any frequency
or wavenumber k using:

f̂k =
(f ,�k)

2⇡
=

1

2⇡
.

Z 2⇡

0
f (x)e�ikx

dx .

Note that there are di↵erent conventions in how various factors of
2⇡ are placed! Be consistent!
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Trigonometric Orthogonal Polynomials

Truncated Fourier Basis

For a general interval [0,X ] the discrete frequencies are

k =
2⇡

X
  = 0,±1,±2, . . .

For non-periodic functions one can take the limit X ! 1 in which
case we get continuous frequencies.
Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,

(
k = �(N � 1)/2, . . . , 0, . . . , (N � 1)/2 if N is odd

k = �N/2, . . . , 0, . . . ,N/2� 1 if N is even,

and for simplicity we focus on N odd.
The least-squares spectral approximation for this basis is:

f (x) ⇡ �(x) =

(N�1)/2X

k=�(N�1)/2

f̂ke
ikx .
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Trigonometric Orthogonal Polynomials

Discrete Dot Product

Now also discretize a given function on a set of N equi-spaced nodes

xj = jh where h =
2⇡

N

where j = N is the same node as j = 0 due to periodicity so we only
consider N instead of N + 1 nodes.

We also have the discrete dot product between two discrete
functions (vectors) f j = f (xj):

f · g = h

N�1X

j=0

fig
?
i

The discrete Fourier basis is discretely orthogonal

�k · �k0 = 2⇡�k,k0
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Trigonometric Orthogonal Polynomials

Proof of Discrete Orthogonality

The case k = k
0 is trivial, so focus on

�k · �k0 = 0 for k 6= k
0

X

j

exp (ikxj) exp
�
�ik

0
xj
�
=

X

j

exp [i (�k) xj ] =
N�1X

j=0

[exp (ih (�k))]j

where �k = k � k
0. This is a geometric series sum:

�k · �k0 =
1� z

N

1� z
= 0 if k 6= k

0

since z = exp (ih (�k)) 6= 1 and
z
N = exp (ihN (�k)) = exp (2⇡i (�k)) = 1.
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Trigonometric Orthogonal Polynomials

Discrete Fourier Transform

The Fourier interpolating polynomial is thus easy to construct

�N(x) =

(N�1)/2X

k=�(N�1)/2

f̂
(N)
k e

ikx

where the discrete Fourier coe�cients are given by

f̂
(N)
k =

f · �k

2⇡
=

1

N

N�1X

j=0

f (xj) exp (�ikxj)

Simplifying the notation and recalling xj = jh, we define the the
Discrete Fourier Transform (DFT):

f̂k =
1

N

N�1X

j=0

fj exp

✓
�2⇡ijk

N

◆
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Trigonometric Orthogonal Polynomials

Discrete spectrum

The set of discrete Fourier coe�cients f̂ is called the discrete
spectrum, and in particular,

Sk =
���f̂k

���
2
= f̂k f̂

?
k ,

is the power spectrum which measures the frequency content of a
signal.

If f is real, then f̂ satisfies the conjugacy property

f̂�k = f̂
?
k ,

so that half of the spectrum is redundant and f̂0 is real.

For an even number of points N the largest frequency k = �N/2
does not have a conjugate partner. It is special and must be treated
with care.
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Trigonometric Orthogonal Polynomials

Fourier Spectral Approximation

Discrete Fourier Transform (DFT):

Forward f ! f̂ : f̂k =
1

N

N�1X

j=0

fj exp

✓
�2⇡ijk

N

◆

Inverse f̂ ! f : f (xj) ⇡ �(xj) =

(N�1)/2X

k=�(N�1)/2

f̂k exp

✓
2⇡ijk

N

◆

There is a very fast algorithm for performing the forward and
backward DFTs (FFT).

There is di↵erent conventions for the DFT depending on the
interval on which the function is defined and placement of factors of
N and 2⇡.
Read the documentation to be consistent!
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Trigonometric Orthogonal Polynomials

Spectral Convergence (or not)

The Fourier interpolating polynomial �(x) has spectral accuracy,
i.e., exponential in the number of nodes N

kf (x)� �(x)k ⇠ e
�N

for analytic functions (more details shortly).
Specifically, nice functions exhibit rapid decay of the Fourier

coe�cients with k, e.g., exponential decay
���f̂k

��� ⇠ e
�|k|.

Discontinuities cause slowly-decaying Fourier coe�cients, e.g., power

law decay
���f̂k

��� ⇠ k
�1 for jump discontinuities.

Jump discontinuities lead to slow convergence of the Fourier series for
non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

kf (x)� �(x)k ⇠
(
N

�1 at points away from jumps

const. at the jumps themselves
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon
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Trigonometric Orthogonal Polynomials

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, . . .
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Approximation Theory

Approximation Theory
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Approximation Theory

Trigonometric projection vs. interpolation

I will temporarily switch to notation in paper on periodic chebfun in
paper of Trefethen et al, assuming odd number of points for
simplicity:

f (t 2 [0, 2⇡]) discretized with N = 2n + 1 points tm =
2⇡m

N

Trigonometric projection: fn(t) =
nX

k=�n

cke
ikt

Trigonometric interpolant: pn(t) =
nX

k=�n

c̃ke
ikt .

Aliasing means that one cannot distinguish two di↵erent Fourier
modes on a given grid:

exp (iktm) = exp (i (k + jN) tm)
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Approximation Theory

Poisson Summation Formula

Observe that because of aliasing:

f (tm) =
1X

k=�1
cke

iktm =
nX

k=�n

1X

j=�1
ck+jNe

i(k+jN)tm

=
nX

k=�n

0

@
1X

j=�1
ck+jN

1

A e
iktm

Recall: pn (tm) =
nX

k=�n

c̃ke
iktm

Since the trigonometric interpolant is unique, we get Poisson’s
summation formula

c̃k =
1X

j=�1
ck+jN
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Approximation Theory

The importance of smoothness

Total variation of di↵erentiable function (can be generalized):

TV[f ] =

Z 2⇡

0

��f 0(x)
�� dx , denote V = TV

h
f
(⌫)

i
.

We have two cases where we have nice error estimates:
If f is ⌫ � 0 times di↵erentiable, then

|ck | 
V

2⇡ |k|⌫+1

which can be proved by integrating ck = (2⇡)�1 R 2⇡
0 f (x)e�ikx

dx by
parts ⌫ + 1 times.
If f (t) is analytic in a half-strip around the real axis of half-width ↵
and bounded by |f (t)| < M, then

|ck |  Me
�↵|k|

which can be proved by shifting the contour of integration above or
below the real line by ↵.
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Approximation Theory

Approximation error: Di↵erentiable

If f is ⌫ � 1 times di↵erentiable then

kf � fnk1 =

������

X

|k|>n

cke
ikt

������
1


X

|k|>n

|ck |

 2
1X

k=n+1

V

2⇡k⌫+1
h 2

Z 1

n

V

2⇡k⌫+1
dk

Performing the integral we get that if f is ⌫ � 1 times di↵erentiable,
then

kf � fnk1  V

⇡⌫n⌫

You can replace fn with pn if you multiply the r.h.s. by 2 to account
for the additional aliasing error.
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Approximation Theory

Approximation error: Analytic

If f (t) is analytic in the half strip then

kf � fnk1 2
1X

k=n+1

Me
�↵k =

2Me
�↵n

e↵ � 1
(geometric series sum)

You can replace fn with pn if you multiply the r.h.s. by 2 to account
for the additional aliasing error.

The Fourier interpolating trigonometric polynomial is spectrally
accurate and a really great approximation for (very) smooth functions.
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Approximation Theory

Trapezoidal Rule

Consider using the trapezoidal rule to approximate a periodic
integral:

I =

Z 2⇡

0
f (x)dx = c0

IN =
2⇡

N

NX

m=1

f (tm) = c̃0.

If f is ⌫ � 1 times di↵erentiable then

|IN � I |  4V

N⌫+1
.

If f (t) is analytic in the half strip then trapezoidal rule is spectrally
accurate:

|IN � I |  4⇡M

e↵N � 1
.
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Fast Fourier Transform

Fast Fourier Transform
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Fast Fourier Transform

DFT

Recall the transformation from real space to frequency space and
back:

f ! f̂ : f̂k =
1

N

N�1X

j=0

fj exp

✓
�2⇡ijk

N

◆
, k = �(N � 1)

2
, . . . ,

(N � 1)

2

f̂ ! f : fj =

(N�1)/2X

k=�(N�1)/2

f̂k exp

✓
2⇡ijk

N

◆
, j = 0, . . . ,N � 1

We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k = 0, . . . ,N:

Forward f ! f̂ : f̂k =
1p
N

N�1X

j=0

fj exp

✓
�2⇡ijk

N

◆
, k = 0, . . . ,N�1

Inverse f̂ ! f : fj =
1p
N

N�1X

k=0

f̂k exp

✓
2⇡ijk

N

◆
, j = 0, . . . ,N � 1
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Fast Fourier Transform

FFT

We can write the transforms in matrix notation:

f̂ =
1p
N
UN f

f =
1p
N
U?

N f̂,

where the unitary Fourier matrix (↵t(eye(N)) in MATLAB) is an
N ⇥ N matrix with entries

u
(N)
jk = !jk

N , !N = e
�2⇡i/N .

A direct matrix-vector multiplication algorithm therefore takes O(N2)
multiplications and additions.
Is there a faster way to compute the non-normalized

f̂k =
N�1X

j=0

fj!
jk
N ?
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Fast Fourier Transform

FFT

For now assume that N is even and in fact a power of two, N = 2n.

The idea is to split the transform into two pieces, even and odd
points:

X

j=2j 0

fj!
jk
N +

X

j=2j 0+1

fj!
jk
N =

N/2�1X

j 0=0

f2j 0
�
!2
N

�j 0k
+ !k

N

N/2�1X

j 0=0

f2j 0+1
�
!2
N

�j 0k

Now notice that

!2
N = e

�4⇡i/N = e
�2⇡i/(N/2) = !N/2

This leads to a divide-and-conquer algorithm:

f̂k =

N/2�1X

j 0=0

f2j 0!
j 0k
N/2 + !k

N

N/2�1X

j 0=0

f2j 0+1!
j 0k
N/2

f̂k = UN f =
�
UN/2feven + !k

NUN/2fodd
�
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Fast Fourier Transform

FFT Complexity

The Fast Fourier Transform algorithm is recursive:

FFTN(f) = FFTN
2
(feven) + w � FFTN

2
(fodd),

where wk = !k
N and � denotes element-wise product. When N = 1

the FFT is trivial (identity).

To compute the whole transform we need log2(N) steps, and at each
step we only need N multiplications and N/2 additions at each step.

The total cost of FFT is thus much better than the direct method’s
O(N2): Log-linear

O(N logN).

Even when N is not a power of two there are ways to do a similar
splitting transformation of the large FFT into many smaller FFTs.

Note that there are di↵erent normalization conventions used in
di↵erent software.
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Fast Fourier Transform

In MATLAB

The forward transform is performed by the function f̂ = ↵t(f ) and
the inverse by f = ↵t(f̂ ). Note that i↵t(↵t(f )) = f and f and f̂ may
be complex.

In MATLAB, and other software, the frequencies are not ordered in
the“normal”way �(N � 1)/2 to +(N � 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny”ordering is

0, 1, . . . , (N � 1)/2, �N � 1

2
,�N � 1

2
+ 1, . . . ,�1.

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

The function ↵tshift can be used to order the frequencies in the
“normal”way, and i↵tshift does the reverse:

f̂ = ↵tshift(↵t(f )) (normal ordering).
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Fast Fourier Transform

FFT-based noise filtering (1)

Fs = 1000 ; % Sampl ing f r e qu en c y
dt = 1/Fs ; % Sampl ing i n t e r v a l
L = 1000 ; % Length o f s i g n a l
t = ( 0 : L�1)⇤dt ; % Time v e c t o r
T=L⇤ dt ; % Tota l t ime i n t e r v a l

% Sum of a 50 Hz s i n u s o i d and a 120 Hz s i n u s o i d
x = 0 .7⇤ s i n (2⇤ p i ⇤50⇤ t ) + s i n (2⇤ p i ⇤120⇤ t ) ;
y = x + 2⇤ randn ( s i z e ( t ) ) ; % S i n u s o i d s p l u s n o i s e

f i g u r e ( 1 ) ; c l f ;
p l o t ( t ( 1 : 1 0 0 ) , y ( 1 : 1 0 0 ) , ’ b�� ’); ho ld on
t i t l e ( ’ S i g n a l Cor rupted wi th Zero�Mean Random Noise ’ )
x l a b e l ( ’ t ime ’ )
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Fast Fourier Transform

FFT-based noise filtering (2)

i f ( 0 )
N=(L /2)⇤2 ; % Even N
y ha t = f f t ( y ( 1 :N) ) ;
% F r e qu en c i e s o rd e r ed i n a funny way :
f f u nn y = 2⇤ p i /T⇤ [ 0 :N/2�1, �N/2: �1 ] ;
% Normal o r d e r i n g :
f no rma l = 2⇤ p i /T⇤ [�N/2 : N/2�1];

e l s e
N=(L/2)⇤2�1; % Odd N
y hat = f f t ( y ( 1 :N) ) ;
% F r e qu en c i e s o rd e r ed i n a funny way :
f f u nn y = 2⇤ p i /T⇤ [ 0 : (N�1)/2 , �(N�1)/2:�1] ;
% Normal o r d e r i n g :
f no rma l = 2⇤ p i /T⇤ [�(N�1)/2 : (N�1)/2 ] ;

end
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Fast Fourier Transform

FFT-based noise filtering (3)

f i g u r e ( 2 ) ; c l f ; p l o t ( f f unny , abs ( y ha t ) , ’ ro ’ ) ; ho ld on ;

y ha t= f f t s h i f t ( y ha t ) ;
f i g u r e ( 2 ) ; p l o t ( f no rma l , abs ( y ha t ) , ’ b� ’ ) ;

t i t l e ( ’ S i ng l e�S ided Ampl i tude Spectrum o f y ( t ) ’ )
x l a b e l ( ’ Frequency (Hz ) ’ )
y l a b e l ( ’ Power ’ )

y ha t ( abs ( y ha t )<250)=0; % F i l t e r out n o i s e
y f i l t e r e d = i f f t ( i f f t s h i f t ( y ha t ) ) ;
f i g u r e ( 1 ) ; p l o t ( t ( 1 : 1 0 0 ) , y f i l t e r e d ( 1 : 1 0 0 ) , ’ r � ’)

A. Donev (Courant Institute) FFT 1/29/2019 36 / 40



Fast Fourier Transform

FFT results
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Fast Fourier Transform

Multidimensional FFT

DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

f̂ =
1

NxNy

Ny�1X

jy=0

Nx�1X

jx=0

fjx ,jy exp


�2⇡i (jxkx + jyky )

N

�

f̂kx ,ky =
1

Nx

Ny�1X

jy=0

exp

✓
�2⇡ijykx

N

◆2

4 1

Ny

Ny�1X

jy=0

fjx ,jy exp

✓
�2⇡ijyky

N

◆3

5

For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:

f̂ = F row (Fcol (f))

The cost is Ny one-dimensional FFTs of length Nx and then Nx

one-dimensional FFTs of length Ny :

NxNy logNx + NxNy logNy = NxNy log (NxNy ) = N logN
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Conclusions

Conclusions
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Conclusions

Conclusions/Summary

Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

Functions with discontinuities are not approximated well: Gibbs
phenomenon.

The Discrete Fourier Transform can be computed very e�ciently
using the Fast Fourier Transform algorithm: O(N logN).
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