Numerical Methods II
 Fourier Transforms and the FFT

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ MATH-GA.2020-001 / CSCI-GA.2421-001, Spring 2019

Jan 29th, 2019

Outline

(1) Logistics
(2) Trigonometric Orthogonal Polynomials
(3) Approximation Theory
(4) Fast Fourier Transform
(5) Conclusions

Trigonometric Orthogonal Polynomials

Periodic Functions

- Consider now interpolating / approximating periodic functions defined on the interval $I=[0,2 \pi]$:

$$
\forall x \quad f(x+2 \pi)=f(x)
$$

as appear in practice when analyzing signals (e.g., sound/image processing).

- Also consider only the space of complex-valued square-integrable functions $L_{2 \pi}^{2}$,

$$
\forall f \in L_{w}^{2}: \quad(f, f)=\|f\|^{2}=\int_{0}^{2 \pi}|f(x)|^{2} d x<\infty
$$

- Polynomial functions are not periodic and thus basis sets based on orthogonal polynomials are not appropriate.
- Instead, consider sines and cosines as a basis function, combined together into complex exponential functions

$$
\phi_{k}(x)=e^{i k x}=\cos (k x)+i \sin (k x), \quad k=0, \pm 1, \pm 2, \ldots
$$

Fourier Basis Functions

$$
\phi_{k}(x)=e^{i k x}, \quad k=0, \pm 1, \pm 2, \ldots
$$

- It is easy to see that these are orhogonal with respect to the continuous dot product

$$
\left(\phi_{j}, \phi_{k}\right)=\int_{x=0}^{2 \pi} \phi_{j}(x) \phi_{k}^{\star}(x) d x=\int_{0}^{2 \pi} \exp [i(j-k) x] d x=2 \pi \delta_{i j}
$$

- The complex exponentials can be shown to form a complete trigonometric polynomial basis for the space $L_{2 \pi}^{2}$, i.e.,

$$
\forall f \in L_{2 \pi}^{2}: \quad f(x)=\sum_{k=-\infty}^{\infty} \hat{f}_{k} e^{i k x}
$$

where the Fourier coefficients can be computed for any frequency or wavenumber k using:

$$
\hat{f}_{k}=\frac{\left(f, \phi_{k}\right)}{2 \pi}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} f(x) e^{-(i k x)} d x
$$

Truncated Fourier Basis

- For a general interval $[0, X]$ the discrete frequencies are

$$
\frac{1}{\text { lengh }} k=\frac{2 \pi}{x} \beta \quad \kappa=0, \pm 1, \pm 2, \ldots
$$

- For non-periodic functions one can take the limit $X \rightarrow \infty$ in which case we get continuous frequencies.
- Now consider a discrete Fourier basis that only includes the first N basis functions, i.e.,

$$
\begin{cases}k=-(N-1) / 2, \ldots, 0, \ldots,(N-1) / 2 & \text { if } N \text { is odd } \\ k=-N / 2, \ldots, 0, \ldots, N / 2-1\end{cases}
$$

and for simplicity we focus on N odd.

- The least-squares spectral approximation for this basis is:

$$
f(x) \approx \phi(x)=\sum_{k=-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k} e^{i k x}
$$

Discrete Dot Product

- Now also discretize a given function on a set of N equi-spaced nodes

$$
x_{j}=j h \text { where } h=\frac{2 \pi}{N}
$$

where $j=N$ is the same node as $j=0$ due to periodicity so we only consider N instead of $N+1$ nodes.

- We also have the discrete dot product between two discrete functions (vectors) $\mathbf{f}_{j}=f\left(x_{j}\right)$:

$$
\mathbf{f} \cdot \mathbf{g}=h \sum_{j=0}^{N-1} f_{i} g_{i}^{\star}
$$

- The discrete Fourier basis is discretely orthogonal

$$
\phi_{k} \cdot \boldsymbol{\phi}_{k^{\prime}}=2 \pi \delta_{k, k^{\prime}}
$$

Proof of Discrete Orthogonality

The case $k=k^{\prime}$ is trivial, so focus on

$$
\begin{gathered}
\boldsymbol{\phi}_{k} \cdot \boldsymbol{\phi}_{k^{\prime}}=0 \text { for } k \neq k^{\prime} \\
\sum_{j} \exp \left(i k x_{j}\right) \exp \left(-i k^{\prime} x_{j}\right)=\sum_{j} \exp \left[i(\Delta k) x_{j}\right]=\sum_{j=0}^{N-1}[\exp (i h(\Delta k))]^{j}
\end{gathered}
$$

where $\Delta k=k-k^{\prime}$. This is a geometric series sum:

$$
\phi_{k} \cdot \phi_{k^{\prime}}=\frac{1-z^{N}}{1-z}=0 \text { if } k \neq k^{\prime}
$$

since $z=\exp (i h(\Delta k)) \neq 1$ and $z^{N}=\exp (i h N(\Delta k))=\exp (2 \pi i(\Delta k))=1$.

Discrete Fourier Transform

- The Fourier interpolating polynomial is thus easy to construct

$$
\phi_{N}(x)=\sum_{k=-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k}^{(N)} e^{i k x}
$$

where the discrete Fourier coefficients are given by

$$
\hat{f}_{k}^{(N)}=\frac{\mathbf{f} \cdot \phi_{k}}{2 \pi}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) \exp \left(-i k x_{j}\right)
$$

- Simplifying the notation and recalling $x_{j}=j h$, we define the the Discrete Fourier Transform (DFT):

$$
\hat{f}_{k} \neq \hat{f}_{k}^{N}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right)
$$

Discrete spectrum

- The set of discrete Fourier coefficients $\hat{\mathbf{f}}$ is called the discrete spectrum, and in particular,

$$
S_{k}=\left|\hat{f}_{k}\right|^{2}=\hat{f}_{k} \hat{f}_{k}^{\star}
$$

is the power spectrum which measures the frequency content of a signal.

- If f is real, then \hat{f} satisfies the conjugacy property

$$
\hat{f}_{-k}=\hat{f}_{k}^{\star},
$$

so that half of the spectrum is redundant and \hat{f}_{0} is real.

- For an even number of points N the largest frequency $k=-N / 2$ does not have a conjugate partner. It is special and must be treated with care.

Fourier Spectral Approximation

- Discrete Fourier Transform (DFT):

$$
\varphi(x)=\sum_{k} f_{l} e^{i}
$$

$$
\text { Forward } \mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right)
$$

$$
\text { Inverse } \hat{\mathbf{f}} \rightarrow f: \quad f\left(x_{j}\right) \approx \phi\left(x_{j}\right)=\sum_{k=-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right)
$$

- There is a very fast algorithm for performing the forward and backward EFTs (FFT).
- There is different conventions for the DFT depending on the interval on which the function is defined and placement of factors of N and 2π.
Read the documentation to be consistent!

$$
\varphi(x)=\sum_{-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k} e^{i k x}
$$

If \vec{x} is arbitrary, use Nou-u nitom FFT (NuFFi)
If \vec{x} is on a regular

$$
\sum_{M \rightarrow N}^{\operatorname{grid}} \sum_{-(M-1) / 2}^{(M+1) / 2} f_{h} e^{i h x}
$$

$$
f_{|h|>(N-1) / 2}=0
$$

interpft:

$$
\begin{cases}-P_{\text {add }} & \hat{f} \text { with } \\ \text { zeros } \\ \rightarrow \text { Do i FFT }\end{cases}
$$

Spectral Convergence (or not)

- The Fourier interpolating polynomial $\phi(x)$ has spectral accuracy, i.e., exponential in the number of nodes N

$$
\|f(x)-\phi(x)\| \sim e^{-N}
$$

for analytic functions (more details shortly).

- Specifically, nice functions exhibit rapid decay of the Fourier coefficients with k, e.g., exponential decay $\left|\hat{f}_{k}\right| \sim e^{-|k|}$.
- Discontinuities cause slowly-decaying Fourier coefficients, e.g., power law decay $\left|\hat{f}_{k}\right| \sim k^{-1}$ for jump discontinuities.
- Jump discontinuities lead to slow convergence of the Fourier series for non-singular points (and no convergence at all near the singularity), so-called Gibbs phenomenon (ringing):

$$
\|f(x)-\phi(x)\| \sim \begin{cases}N^{-1} & \text { at points away from jumps } \\ \text { const. } & \text { at the jumps themselves }\end{cases}
$$

Gibbs Phenomenon

Approximation of a square wave timing signal ($f_{0}=20 \mathrm{MHz}$)

Gibbs Phenomenon

Reconstruction of the periodic square waveform with $1,3,5,7,9$ sinusoids

Aliasing

If we sample a signal at too few points the Fourier interpolant may be wildly wrong: aliasing of frequencies k and $2 k, 3 k, \ldots$

Approximation Theory

Trigonometric projection vs. interpolation

- I will temporarily switch to notation in paper on periodic chebfun in paper of Trefethen et al, assuming odd number of points for simplicity:

$$
f(t \in[0,2 \pi]) \text { discretized with } N=2 n+1 \text { points } t_{m}=\frac{2 \pi m}{N}
$$

$$
\text { Trigonometric projection: } f_{n}(t)=\sum_{k=-n}^{n} c_{k} e^{i k t}
$$

$$
\text { Trigonometric interpolant: } p_{n}(t)=\sum_{k=-n}^{n} \tilde{c}_{k} e^{i k t}
$$

- Aliasing means that one cannot distinguish two different Fourier modes on a given grid:

$$
\exp \left(i k t_{m}\right)=\exp \left(i(k+j N) t_{m}\right)
$$

Poisson Summation Formula

- Observe that because of aliasing:

$$
\begin{aligned}
\ln \left|f_{k}\right|^{2} f\left(t_{m}\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k t_{m}} & =\sum_{k=-n}^{n} \sum_{j=-\infty}^{\infty} c_{k+j N} e^{i(k+j N) t_{m}} \\
\qquad 10^{-6}+\frac{1}{2} & =\sum_{k=-n}^{n}\left(\sum_{j=-\infty}^{\infty} c_{k+j N}\right) e^{i k t_{m}} \\
\text { Recall: } p_{n}\left(t_{m}\right)= & \sum_{k=-n}^{n} \tilde{c}_{k} e^{i k t_{m}}
\end{aligned}
$$

- Since the trigonometric interpolant is unique, we get Poisson's summation formula

The importance of smoothness

- Total variation of differentiable function (can be generalized):

$$
\operatorname{TV}[f]=\int_{0}^{2 \pi}\left|f^{\prime}(x)\right| d x, \quad \text { denote } V=\operatorname{TV}\left[f^{(\nu)}\right]
$$

- We have two cases where we have nice error estimates:
- If f is $\nu \geq 0$ times differentiable, then

$$
\left|c_{k}\right| \leq \frac{V}{2 \pi|k|^{\nu+1}}
$$

which can be proved by integrating $c_{k}=(2 \pi)^{-1} \int_{0}^{2 \pi} f(x) e^{-i k x} d x$ by parts $\nu+1$ times.

- If $f(t)$ is analytic in a half-strip around the real axis of half-width α and bounded by $|f(t)|<M$, then

$$
\left|c_{k}\right| \leq M e^{-\alpha|k|}
$$

which can be proved by shifting the contour of integration above or below the real line by α.

Approximation error: Differentiable

- If f is $\nu \geq 1$ times differentiable then

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{\infty} & =\left\|\sum_{|k|>n} c_{k} e^{i k t}\right\|_{\infty} \leq \sum_{|k|>n}\left|c_{k}\right| \\
& \leq 2 \sum_{k=n+1}^{\infty} \frac{V}{2 \pi k^{\nu+1}} \approx 2 \int_{n}^{\infty} \frac{V}{2 \pi k^{\nu+1}} d k
\end{aligned}
$$

- Performing the integral we get that if f is $\nu \geq 1$ times differentiable, then

$$
\left\|f-f_{n}\right\|_{\infty} \leq \frac{V}{\pi \nu n^{\nu}}
$$

- You can replace f_{n} with p_{n} if you multiply the r.h.s. by 2 to account for the additional aliasing error.

Approximation error: Analytic

- If $f(t)$ is analytic in the half strip then

$$
\left.\left\|f-f_{n}\right\|_{\infty} \leq 2 \sum_{k=n+1}^{\infty} M e^{-\alpha k}=\frac{2 M e^{-\alpha n}}{e^{\alpha}-1} \text { (geometric series sum }\right)
$$

- You can replace f_{n} with p_{n} if you multiply the r.h.s. by 2 to account for the additional aliasing error.
- The Fourier interpolating trigonometric polynomial is spectrally accurate and a really great approximation for (very) smooth functions.

Trapezoidal Rule

- Consider using the trapezoidal rule to approximate a periodic integral:

$$
\begin{gathered}
I=\int_{0}^{2 \pi} f(x) d x=c_{0} \\
I_{N}=\frac{2 \pi}{N} \sum_{m=1}^{N} f\left(t_{m}\right)=\tilde{c}_{0}
\end{gathered}
$$

- If f is $\nu \geq 1$ times differentiable then

$$
\left|I_{N}-I\right| \leq \frac{4 V}{N^{\nu+1}}
$$

- If $f(t)$ is analytic in the half strip then trapezoidal rule is spectrally accurate:

$$
\left|I_{N}-I\right| \leq \frac{4 \pi M}{e^{\alpha N}-1}
$$

Fast Fourier Transform

DFT

- Recall the transformation from real space to frequency space and back:

$$
\begin{aligned}
& \mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right), \quad k=-\frac{(N-1)}{2}, \ldots, \frac{(N-1)}{2} \\
& \mu A \text { TLAB } \rightarrow 1 \\
& \hat{\mathbf{f}} \rightarrow \mathbf{f}: \quad f_{j}=\sum_{k=-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right), \quad j=0, \ldots, N-1
\end{aligned}
$$

- We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to $k=0, \ldots, N$:
Forward $\mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right), \quad k=0, \ldots, N-1$
Inverse $\hat{\mathbf{f}} \rightarrow \mathbf{f}: \quad f_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right), \quad j=0, \ldots, N-1$

FFT

- We can write the transforms in matrix notation:

$$
\begin{array}{ll}
\hat{\mathbf{f}}=\frac{1}{\sqrt{N}} \mathbf{U}_{N} \mathbf{f} & O(N \log N) \\
\mathbf{f}=\frac{1}{\sqrt{N}} \mathbf{U}_{N}^{\star} \hat{\mathbf{f}}, & F F T
\end{array}
$$

where the unitary Fourier matrix (fft(eye (N)) in MATLAB) is an $N \times N$ matrix with entries

$$
u_{j k}^{(N)}=\omega_{N}^{j k}, \quad \omega_{N}=e^{-2 \pi i / N}
$$

- A direct matrix-vector multiplication algorithm therefore takes $O\left(N^{2}\right)$ multiplications and additions.
- Is there a faster way to compute the non-normalized

$$
\hat{f}_{k}=\sum_{j=0}^{N-1} f_{j} \omega_{N}^{j k} ?
$$

FFT

- For now assume that N is even and in fact a power of two, $N=2^{n}$.
- The idea is to split the transform into two pieces, even and odd points:

$$
\sum_{j=2 j^{\prime}} f_{j} \omega_{N}^{j k}+\sum_{j=2 j^{\prime}+1} f_{j} \omega_{N}^{j k}=\sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}}\left(\omega_{N}^{2}\right)^{j^{\prime} k}+\omega_{N}^{k} \sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}+1}\left(\omega_{N}^{2}\right)^{j^{\prime} k}
$$

- Now notice that

$$
\omega_{N}^{2}=e^{-4 \pi i / N}=e^{-2 \pi i /(N / 2)}=\omega_{N / 2}
$$

- This leads to a divide-and-conquer algorithm:

$$
\begin{aligned}
& \hat{f}_{k}=\sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}} \omega_{N / 2}^{j^{\prime} k}+\omega_{N}^{k} \sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}+1} \omega_{N / 2}^{j^{\prime} k} \\
& \hat{f}_{k}=\mathbf{U}_{N} \mathbf{f}=\left(\mathbf{U}_{N / 2} \mathbf{f}_{\text {even }}+\omega_{N}^{k} \mathbf{U}_{N / 2} \mathbf{f}_{\text {odd }}\right)
\end{aligned}
$$

FFT Complexity

- The Fast Fourier Transform algorithm is recursive:

$$
F F T_{N}(\mathbf{f})=F F T_{\frac{N}{2}}\left(\mathbf{f}_{\text {even }}\right)+\mathbf{w} \boxtimes F F T_{\frac{N}{2}}\left(\mathbf{f}_{o d d}\right)
$$

where $w_{k}=\omega_{N}^{k}$ and \square denotes element-wise product. When $N=1$ the FFT is trivial (identity).

- To compute the whole transform we need $\log _{2}(N)$ steps, and at each step we only need N multiplications and $N / 2$ additions at each step.
- The total cost of FFT is thus much better than the direct method's $O\left(N^{2}\right)$: Log-linear

$$
O(N \log N)
$$

- Even when N is not a power of two there are ways to do a similar splitting transformation of the large FFT into many smaller FFTs.
- Note that there are different normalization conventions used in different software.

In MATLAB

- The forward transform is performed by the function $\hat{f}=f f t(f)$ and the inverse by $f=f f t(\hat{f})$. Note that $\operatorname{ifft}(f f t(f))=f$ and f and \hat{f} may be complex.
- In MATLAB, and other software, the frequencies are not ordered in the "normal" way $-(N-1) / 2$ to $+(N-1) / 2$, but rather, the nonnegative frequencies come first, then the positive ones, so the "funny" ordering is

$$
0,1, \ldots,(N-1) / 2, \quad-\frac{N-1}{2},-\frac{N-1}{2}+1, \ldots,-1
$$

This is because such ordering (shift) makes the forward and inverse transforms symmetric.

- The function fftshift can be used to order the frequencies in the "normal" way, and ifftshift does the reverse:

$$
\hat{f}=f f t s h i f t(f f t(f)) \text { (normal ordering). }
$$

FFT-based noise filtering (1)

$$
\begin{aligned}
& \mathrm{Fs}=1000 ; \\
& \mathrm{dt}=1 / \mathrm{Fs} \\
& \mathrm{~L}=1000 ; \\
& \mathrm{t}=(0: \mathrm{L}-1) * \mathrm{dt} ; \\
& \mathrm{T}=\mathrm{L} * \mathrm{dt}
\end{aligned}
$$

\% Sampling frequency
\% Sampling interval
\% Length of signal
\% Time vector
\% Total time interval
\% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
$\mathrm{x}=0.7 * \sin (2 * \mathrm{pi} * 50 * \mathrm{t})+\sin (2 * \mathrm{pi} * 120 * \mathrm{t})$;
$y=x+2 *$ randn (size (t)) ; $\quad \%$ Sinusoids plus noise
figure (1); clf;
plot (t (1:100),y(1:100),'b--'); hold on title ('Signal Corrupted with Zero-Mean Random Noise') xlabel ('time')

FFT-based noise filtering (2)

if (0)
$\mathrm{N}=(\mathrm{L} / 2) * 2$; \% Even N
y hat $=f f t(y(1: N))$;
\% Frequencies ordered in a funny way:
f_funny $=2 * \mathrm{pi} / \mathrm{T} *[0: \mathrm{N} / 2-1,-\mathrm{N} / 2:-1]$;
\% Normal ordering:
f_normal $=2 *$ pi/T* $[-\mathrm{N} / 2: \mathrm{N} / 2-1]$;
else
$\mathrm{N}=(\mathrm{L} / 2) * 2-1$; \% Odd N
y _hat $=f f t(y(1: N))$;
\% Frequencies ordered in a funny way:
f_funny $=2 * \mathrm{pi} / \mathrm{T} *[0:(\mathrm{N}-1) / 2,-(\mathrm{N}-1) / 2:-1]$;
\% Normal ordering:
f_normal $=2 * \mathrm{pi} / \mathrm{T} *[-(\mathrm{N}-1) / 2:(\mathrm{N}-1) / 2]$;
end

FFT-based noise filtering (3)

figure (2); clf; plot(f_funny, abs(y_hat), 'ro'); hold $y_{\text {_h }}$ at=fftshift (y_hat);
figure (2); plot(f_normal, abs(y_hat), 'b-');
title ('Single-Sided Amplitude Spectrum of $y(t)$ ')
xlabel ('Frequency (Hz$)^{\prime}$)
ylabel('Power')
y_hat (abs (y_hat) <250) $=0$; $\%$ Filter out noise y_filtered = ifft (ifftshift (y_hat)) ;
figure (1); plot(t(1:100),y_filtered (1:100),'r-')

FFT results

Signal Corrupted with Zero-Mean Random Noise

Single-Sided Amplitude Spectrum of $\mathrm{y}(\mathrm{t})$

Multidimensional FFT

- DFTs and FFTs generalize straightforwardly to higher dimensions due to separability: Transform each dimension independently

$$
\begin{gathered}
\hat{f}=\frac{1}{N_{x} N_{y}} \sum_{j_{y}=0}^{N_{y}-1} \sum_{j_{x}=0}^{N_{x}-1} f_{j_{x}, j_{y}} \exp \left[-\frac{2 \pi i\left(j_{x} k_{x}+j_{y} k_{y}\right)}{N}\right] \\
\hat{\mathbf{f}}_{k_{x}, k_{y}}=\frac{1}{N_{x}} \sum_{j_{y}=0}^{N_{y}-1} \exp \left(-\frac{2 \pi i j_{y} k_{x}}{N}\right)\left[\frac{1}{N_{y}} \sum_{j_{y}=0}^{N_{y}-1} f_{j_{x}, j_{y}} \exp \left(-\frac{2 \pi i j_{y} k_{y}}{N}\right)\right]
\end{gathered}
$$

- For example, in two dimensions, do FFTs of each column, then FFTs of each row of the result:

$$
\hat{\mathbf{f}}=\mathcal{F}_{\text {row }}\left(\mathcal{F}_{\text {col }}(\mathbf{f})\right)
$$

- The cost is N_{y} one-dimensional FFTs of length N_{x} and then N_{x} one-dimensional FFTs of length N_{y} :

$$
N_{x} N_{y} \log N_{x}+N_{x} N_{y} \log N_{y}=N_{x} N_{y} \log \left(N_{x} N_{y}\right)=N \log N
$$

Conclusions

Conclusions/Summary

- Periodic functions can be approximated using basis of orthogonal trigonometric polynomials.
- The Fourier basis is discretely orthogonal and gives spectral accuracy for smooth functions.
- Functions with discontinuities are not approximated well: Gibbs phenomenon.
- The Discrete Fourier Transform can be computed very efficiently using the Fast Fourier Transform algorithm: $O(N \log N)$.

