Numerical Methods II (Pseudo)Spectral Methods for PDEs

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ MATH-GA.2020-001 / CSCI-GA.2421-001, Spring 2019
Feb 5th, 2019

Outline

(1) Convolutions using FFT
(2) Spectral Differentiation
(3) Solving PDEs using FFTs
(4) Chebyshev Series via FFTs
(5) Conclusions

Convolutions using FFT

Filtering using FFTs

- Because FFT is a very fast, almost linear algorithm, it is used often to accomplish tasks in data processing, e.g., noise filtering (see example in previous lecture), computing (auto)correlation functions, etc.
- Denote the (continuous or discrete) Fourier transform with

$$
\hat{\mathbf{f}}=\mathcal{F}(\mathbf{f}) \text { and } \mathbf{f}=\mathcal{F}^{-1}(\hat{\mathbf{f}}) .
$$

- Plain FFT is used in signal processing for digital filtering (low-pass, high-pass, or band-pass filters)
- How to do it: Multiply the spectrum by a filter $\hat{S}(k)$ discretized as $\hat{\mathbf{s}}=\{\hat{S}(k)\}_{k}:$

$$
\mathbf{f}_{\text {filtered }}=\mathcal{F}^{-1}(\hat{\mathbf{s}} \boxtimes \hat{\mathbf{f}})=\mathbf{f} \circledast \mathbf{s},
$$

where \square denotes element-wise product, and \circledast denotes convolution.

Convolution

- For continuous function, an important type of operation found in practice is convolution (smoothing) of a (periodic) function $f(x)$ with a (periodic) kernel $K(x)$:

$$
(K \circledast f)(x)=\int_{0}^{2 \pi} f(y) K(x-y) d y
$$

- It is not hard to prove the convolution theorem:

$$
\mathcal{F}(K \circledast f)=\mathcal{F}(K) \boxtimes \mathcal{F}(f)
$$

- Importantly, this remains true for discrete convolutions:

$$
(\mathbf{K} \circledast \mathbf{f})_{j}=\frac{1}{N} \sum_{j^{\prime}=0}^{N-1} f_{j^{\prime}} K_{j-j^{\prime}} \quad \Rightarrow
$$

$\mathcal{F}(\mathbf{K} \circledast \mathbf{f})=\mathcal{F}(\mathbf{K}) \backsim \mathcal{F}(\mathbf{f}) \quad \Rightarrow \quad \mathbf{K} \circledast \mathbf{f}=\mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \boxtimes \mathcal{F}(\mathbf{f}))$

Proof of Discrete Convolution Theorem

Assume that the normalization used is a factor of N^{-1} in the forward and no factor in the inverse DFT:

$$
\begin{gathered}
f_{j}=\sum_{k=0}^{N-1} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right), \text { and } \hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right) \\
{\left[\mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \boxtimes \mathcal{F}(\mathbf{f}))\right]_{k}=\sum_{k=0}^{N-1} \hat{f}_{k} \hat{K}_{k} \exp \left(\frac{2 \pi i j k}{N}\right)=} \\
N^{-2} \sum_{k=0}^{N-1}\left(\sum_{l=0}^{N-1} f_{l} \exp \left(-\frac{2 \pi i l k}{N}\right)\right)\left(\sum_{m=0}^{N-1} K_{m} \exp \left(-\frac{2 \pi i m k}{N}\right)\right) \exp \left(\frac{2 \pi i j k}{N}\right) \\
=N^{-2} \sum_{l=0}^{N-1} f_{l} \sum_{m=0}^{N-1} K_{m} \sum_{k=0}^{N-1} \exp \left[\frac{2 \pi i(j-l-m) k}{N}\right]
\end{gathered}
$$

contd.

Recall the key discrete orthogonality property

$$
\begin{gathered}
\forall \Delta k \in \mathbb{Z}: \quad N^{-1} \sum_{j} \exp \left[i \frac{2 \pi}{N} j \Delta k\right]=\delta_{\Delta k} \Rightarrow \\
N^{-2} \sum_{l=0}^{N-1} f_{l} \sum_{m=0}^{N-1} K_{m} \sum_{k=0}^{N-1} \exp \left[\frac{2 \pi i(j-l-m) k}{N}\right]=N^{-1} \sum_{l=0}^{N-1} f_{l} \sum_{m=0}^{N-1} K_{m} \delta_{j-l-m} \\
=N^{-1} \sum_{l=0}^{N-1} f_{l} K_{j-l}=(\mathbf{K} \circledast \mathbf{f})_{j}
\end{gathered}
$$

Computing convolutions requires 2 forward FFTs, one element-wise product, and one inverse FFT, for a total cost $N \log N$ instead of N^{2}. We can use this to solve periodic integro-differential equations involving convolutions, for example (recall that trapezoidal rule for the convolution is spectrally accurate for analytic functions)!

Spectral Differentiation

Spectral Derivative

- Consider approximating the derivative of a periodic function $f(x)$, computed at a set of N equally-spaced nodes, \mathbf{f}.
- We can differentiate the spectral approximation: Spectral derivative

$$
\begin{aligned}
& f^{\prime}(x) \approx \phi^{\prime}(x)=\frac{d}{d x} \phi(x)=\frac{d}{d x}\left(\sum_{k=0}^{N-1} \hat{f}_{k} e^{i k x}\right)=\sum_{k=0}^{N-1} \hat{f}_{k} \frac{d}{d x} e^{i k x} \\
&=\sum_{k=0}^{N-1}\left(i k \hat{f}_{k}\right) e^{i k x}=\sum_{k=0}^{N-1}{\left.\widehat{\left(\phi^{\prime}\right.}\right)}_{k} e^{i k x} \Rightarrow \\
& \widehat{\left(\phi^{\prime}\right)_{k}}=i k \hat{f}_{k} \quad \Rightarrow \quad \phi^{\prime}=\mathcal{F}^{-1}(i \mathbf{k} \boxtimes \hat{\mathbf{f}})
\end{aligned}
$$

- Differentiation, like convolution, becomes multiplication in Fourier space.
Indeed $-\int f(y) \delta^{\prime}(x-y) d y=\int f^{\prime}(y) \delta(x-y) d y=f^{\prime}(x)$.

Unmatched mode

- Recall that for even N there is one unmatched mode, the one with the highest frequency and amplitude $\hat{f}_{N / 2}$.
- We need to choose what we want to do with that mode; see notes by S. G. Johnson (MIT) linked on webpage for details:

$$
\phi(x)=\hat{f}_{0}+\sum_{0<k<N / 2}\left(\hat{f}_{i k} \hat{f}_{k} e^{i k x}+\hat{f}_{N-k} e^{-i k x}\right)+\hat{f}_{N / 2} \cos \left(\frac{N x}{2}\right) .
$$

This is the unique "minimal oscillation" trigonometric interpolant.

- Differentiating this we get

$$
\widehat{\left(\phi^{\prime}\right)_{k}}=\hat{f}_{k} \begin{cases}0 & \text { if } k=N / 2 \\ i k & \text { if } k<N / 2 \\ i(k-N) & \text { if } k>N / 2\end{cases}
$$

- Real valued interpolation samples result in real-valued $\phi(x)$ for all x.

FFT-based differentiation

\% From Nick Trefethen's Spectral Methods book
\% Differentiation of $\exp (\sin (x))$ on $(0,2 * p i]:$
$\mathrm{N}=8$; \% Even number!
$h=2 * \mathrm{pi} / \mathrm{N} ; \mathrm{x}=\mathrm{h} *(1: \mathrm{N}){ }^{\prime}$;
$v=\exp (\sin (x)) ;$ prime $=\cos (x) . * v$;
v_{-}hat $=f f t(v) ;$
it $=1 \mathrm{i} * 0: \mathrm{N} / 2-10$ N/2+1:-1]; \% Zero special mode w_{-}hat $=i k \cdot * v_{-} h a t$;
w=realdifft $(w-h a t)) ; ~ \leftarrow$ Always check ing is

Differentiation matrices

- Writing $g=f^{\prime}$ we can denote this in matrix notation $\hat{\mathbf{g}}=\widehat{\mathbf{D}}_{1} \hat{\mathbf{f}}$, where $\widehat{\mathbf{D}}_{1}$ is a diagonal differentiation matrix with ik on its diagonal (why does it have to be a matrix?).
- Observe that $\widehat{\mathbf{D}}_{1}^{\star}=-\widehat{\mathbf{D}}_{1}$ (anti-Hermitian).
- In real space $\mathbf{g}=\mathbf{D f}$ fand in Fourier space $\hat{\mathbf{g}}=\widehat{\mathbf{D}} \hat{\mathbf{f}}$, related by

$$
\mathbf{D}=\mathbf{F}^{-1} \widehat{\mathbf{D}} \mathbf{F}=\mathbf{F}^{\star} \hat{\mathbf{D}} \mathbf{F}, \leftarrow \text { antisyumetric }
$$

where \mathbf{F} is the unitary DFT matrix.
Observe this is a similarity transformation!

- Here $\mathbf{F f}$ and $\mathbf{F}^{\star} \hat{\mathbf{f}}$ are computed using the (forward/inverse) FFT in nearly linear time.

Second derivative

- Differentiating the interpolant twice we get

$$
\widehat{\left(\phi^{\prime \prime}\right)_{k}}=\hat{f}_{k}\left\{\begin{array}{ll}
-k^{2} & \text { if } k<N / 2 \\
-(k-N)^{2} & \text { if } k N / 2
\end{array} .\right.
$$

- Similarly, if $g=f^{\prime \prime}$ then $\hat{\mathbf{g}}=\widehat{\mathbf{D}}_{2} \hat{\mathbf{f}}$, where $\widehat{\mathbf{D}}_{2}$ has $-k^{2}$ on its diagonal, $\widehat{\mathbf{D}}_{2}^{\star}=\widehat{\mathbf{D}}_{2}$ (Hermitian, same for \mathbf{D}_{2}).
- Double differentiating is different from differentiating twice in sequence, i.e., $\mathbf{D}_{2} \neq \mathbf{D}_{1}^{2}$.
- Why is \mathbf{D}_{2} "better" than \mathbf{D}_{1}^{2} ? They have the same spectral accuracy.
- \mathbf{D}_{1}^{2} has a nontrivial null space of $\mathbf{1}$ and $\mathbf{F}^{-1} \mathbf{e}_{N / 2}$, while \mathbf{D}_{2} has only $\mathbf{1}$.
- So \mathbf{D}_{2} is closer to the continuum Laplacian operator in periodic domains (having only constant functions in its null space). This is important when solving elliptic/parabolic PDEs.

$$
\begin{aligned}
& \nabla^{2} u(\vec{x})=f(\vec{x}) \\
& \downarrow \\
& D_{2}=F^{*} \hat{D}_{2} F \\
& D_{2} u=f \\
& \hat{D}_{2} \hat{u}=\hat{f} \\
& \hat{u}=\left(\hat{D}_{2}\right)^{-1} \hat{f} \\
& \hat{i} \\
& \frac{1}{h^{2}}
\end{aligned}
$$

Discrete Matrices vs Continuum Operators

- The lesson learned from $\mathbf{D}_{2} \neq \mathbf{D}_{1}^{2}$ is quite general: Continuum identities don't always translate to discrete identities.
- Many properties that seem obvious in continuum, may not work for discretizations:
- Chain and product rules e.g., $(c u)^{\prime}=c^{\prime} u+c u^{\prime}$.
- Integration by parts (including boundary terms).
- Operators commute, e.g., $\partial_{x}\left(\partial_{y} f\right)=\partial_{y}\left(\partial_{x} f\right)$.
- Null spaces, eigenvalue spectrum properties (e.g., positive definiteness, symmetry, etc.).
- Mimetic discretizations try to mimic some of the properties of continuum operators.

Sturm-Louville Problems

- As an example, consider the periodic Sturm-Louville (SL) operator appearing in many boundary-value problems (BVPs):

$$
\mathcal{L}=-\frac{d}{d x} c(x) \frac{d}{d x}, \quad c(x)>0
$$

- From PDE class we know that this is a symmetric positive semidefinite (SPsD) differential operator with only constant functions in its null space; proving this uses integration by parts.
- When discretized, this will become a matrix \mathbf{L}. We want this matrix to be SPsD with only \mathbf{e} in its null space.
- It is a bad idea is to use the chain rule and discretize:

$$
\begin{gathered}
-\mathcal{L} f=\frac{d}{d x} c(x) \frac{d}{d x} f(x)=c^{\prime} f^{\prime}+c f^{\prime \prime} \\
-\mathbf{L f}=\left(\mathbf{D}_{1} \mathbf{c}\right) \bigoplus_{\sigma}\left(\mathbf{D}_{1} \mathbf{f}\right)+(c)\left(\mathbf{D}_{2} \mathbf{f}\right) \quad(\mathrm{BAD}!)
\end{gathered}
$$

since this is not an SPsD L. in real space

Pseudospectral SL operator

- Another possibility is the pseudospectral algorithm that does not use the chain rule:

$$
\mathbf{L f}=-\frac{\mathbf{D}_{1}\left(\mathbf{c} \oplus \widetilde{\mathbf{D}_{1} f}\right)}{=}==\frac{d}{d x} \subset \frac{d}{d x}
$$

$$
\mathbf{L f}=\mathcal{F}^{-1} \quad \mathbf{i k} \bullet \mathcal{F}\left(\mathbf{c} \bullet\left(\mathcal{F}^{-1}(i \mathbf{k} \odot(\mathcal{F} \mathbf{f}))\right)\right) .
$$

- In words: Go to Fourier space using the FFT, multiply coefficients by $i k$, go back to real space with iFFT, multiply by $c(x)$ in real-space, then go back to Fourier space (FFT) and multiply coefficients by $-i k$, and then go back to real space again (iFFT).
- Why does this work? In matrix notation

$$
\mathbf{L}=-\left(\mathbf{F}^{\star} \hat{\mathbf{D}}_{1} \mathbf{F}\right) \mathbf{C}\left(\mathbf{F}^{\star} \widehat{\mathbf{D}}_{1} \mathbf{F}\right)=\mathbf{D}_{1} \mathbf{C} \widehat{\mathbf{D}}_{1}^{\star},
$$

where \mathbf{C} is a diagonal matrix with $\mathbf{c}>0$ on its diagonal.

- This is obviously SPsD since \mathbf{C} is SPD (why?).

Pseudospectral SL algorithm

For even N the pseudo-spectral \mathbf{L} has a nontrivial null space just like \mathbf{D}_{1}^{2} does (think $c=1$), but this can be fixed (see article by Johnson):
(1) Compute \mathbf{f}^{\prime} using FFT/iFFT but save the coefficient $\hat{f}_{N / 2}$ (two FFTs).
(2) Compute $\mathbf{g}=\mathbf{c} \boxtimes \mathbf{f}^{\prime}$ in real space (pseudospectral part).
(3) Compute $\hat{\mathbf{g}}$ using FFT.
(9) Compute $\widehat{(\mathrm{Lf})}$ in Fourier space as:

$$
\widehat{(\mathbf{L f})_{k}}= \begin{cases}\hat{c}_{0}\left(\frac{N}{2}\right)^{2} \hat{f}_{N / 2} & \text { if } k=N / 2 \\ -i k \hat{g}_{k} & \text { if } k<N / 2 \\ -i(k-N) \hat{g}_{k} & \text { if } k>N / 2\end{cases}
$$

(3) Compute Lf in real space using an iFFT.

Solving PDEs using FFTs

KdV equation

- Consider as an example the periodic Korteweg - de Vries equation on $[0,2 \pi)$,

$$
\partial_{t} \phi=-\partial_{x x x} \phi+6 \phi\left(\partial_{x} \phi\right),
$$

which models waves in a channel and has soliton solutions.

- First note that $\phi \phi_{x}=\partial_{x}\left(\phi^{2} / 2\right)$ and this is the right form to use because KdV is a conservation law and $\phi^{2} / 2$ is a flux.
- Not all forms of PDEs equivalent on paper are equivalent numerically! We prefer

$$
\partial_{t} \phi=-\partial_{x x x} \phi+3 \partial_{x}\left(\phi^{2}\right) .
$$

- The idea is to use a Fourier series representation,

$$
\phi(x, t)=\sum_{k} \underline{\underline{\hat{\phi}_{k}(t)}} e^{i k x}
$$

Spectral spatial discretization

- If we go to Fourier space we get a system of coupled (nonlinear) ODEs:

- Note that the unmatched mode $N / 2$ should be set to zero for the third derivative (all odd derivatives in fact).
- This is a pseudo-spectral spatial discretization and will be spectrally accurate for analytic solutions.
- In order to actually compute solutions we need methods to solve systems of ODEs (coming up soon)!

Spectral
A deantages

- Spectral accuracy $A\left\{\begin{array}{l}\text { allows as to use } \\ \text { a much coarser } \\ \text { grid to reach } \\ \text { a given accurag }\end{array}\right.$ $\left(B^{*}\right)$ For linear ODEs with coust-celts, Matrices are diagonal

Nou-periodic domains
Next time

Pisa deantages

- using FFTS only works with periodic because otherwise \hat{v}_{e} do not decay fast (algeleraicaly) (But or thogonal polynomials work)
(B) Matrices are, in general, dense
-(A^{*}) Fail for non-smooth solutions
- Do not presence structure at PDE

Nonlinear PDEs

- Observe that if the nonlinear term was not there, we could write the solution right away: $\varphi_{t}=\varphi_{x \times x}, \hat{\varphi}=i \ell^{3} \hat{\varphi}$

$$
\hat{\phi}_{k}(t)=\hat{\phi}_{k}(0) \exp \left(i k^{3} t\right) \text { for all } k
$$

- This is called an exponential temporal integrator and can be used to build accurate integrators for the nonlinear KdV equation.
- If the equation were linear, then $\hat{\phi}_{k}(t)=0$ if $\hat{\phi}_{k}(0)=0$: linear PDEs do not generate new Fourier components.
- But this is not true for nonlinear equations: in general, the solution will have nonzero components for all k for sufficiently long times, and aliasing becomes a problem.
- An extreme example is Burger's equation, which develops singularities (shocks), leading to the Gibbs phenomenon and loss of spectral accuracy.

Aliasing

- As an example, consider the product (or square)

$$
w(x)=\left(\sum_{k^{\prime \prime}=-n}^{n} \hat{u}_{k^{\prime \prime}} e^{i k^{\prime \prime \prime} x}\right)\left(\sum_{k=-n}^{n} \hat{u}_{k^{\prime}} e^{i k^{\prime} x}\right)=\sum_{k=-2 n}^{2 n} \hat{w}_{k} e^{i k x}
$$

- So we doubled the number of Fourier modes, and handling this would require growing our FFT grid along the way!
- What we want to compute is the truncated Fourier series

$$
w(x) \approx \tilde{w}(x)=\sum_{k=-n}^{n} \hat{w}_{k} e^{i k x}
$$

- If we do this naively using FFTs on a grid of $N=2 n+1$ points, however, we will alias the modes $|k|>n$ with those with $|k|<n$ and this will introduce aliasing error.

Anti-aliasing via oversampling

- But there is an easy fix using oversampling. Take $u=v$ for simplicity and even N :

$$
M=3 N / 2 \text { is more ethicient }
$$

(1) Evaluate $u(x)$ on a grid of N points, take the FFT to compute $\hat{\mathbf{u}}$.
(2) Padd the FFT to size $M=2 N$, avoiding fftshift (see fftinterp):

$$
(\hat{\mathbf{u}})_{\text {padded }}=[\hat{\mathbf{u}}(1: N / 2) \quad \operatorname{zeros}(1, M-N) \quad \hat{\mathbf{u}}(N / 2+1: \text { end })] .
$$

Note: It can be shown that $M=3 N / 2$ also gives the same result.
(3) Compute an oversampled $u_{o s}(x)$ on a grid of size $2 N$ by taking the iFFT of $(\hat{\mathbf{u}})_{\text {padded }}$.
(9) Compute $\mathbf{u}_{\mathrm{os}}^{2}$ in real space, and take the FFT to compute $\hat{\mathbf{w}}$.
(5) Truncate to N Fourier coefficients by returning $[\hat{\mathbf{w}}(1: N / 2) \quad \hat{\mathbf{w}}(M-N / 2+1:$ end $)]$.

Chebyshev Series via FFTs

Chebyshev Polynomials

- If we are solving PDEs on a bounded interval, say $[-1,1]$ for simplicity, we need other orthogonal polynomials, not trig ones.
- Recall from Numerical Methods I the Chebyshev polynomials:

$$
\begin{gathered}
T_{n}(x \in[-1,1])=\cos (n \theta) \quad \text { where } \quad x=\cos (\theta \in[0,2 \pi]) \\
T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x, \ldots
\end{gathered}
$$

- These are orthogonal with respect to the weighted inner/dot product:

$$
\int_{-1}^{1} T_{m}(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}= \begin{cases}\pi & m=n=0 \\ \pi / 2 & m=n>0 \\ 0 & m \neq n\end{cases}
$$

Chebyshev Interpolants

- We can represent functions using these polynomials as basis functions,

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \breve{f}_{n} T_{n}(x) \Rightarrow \\
& \breve{f}_{n>0}=\frac{2}{\pi} \int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

- We discretize the function pointwise at $N+1$ Chebyshev nodes

$$
\begin{aligned}
& \theta_{j}=j \pi / N, \quad j=0 \ldots N \\
& x_{j}=\cos \theta_{j}
\end{aligned}
$$

- This gives us the Chebyshev interpolant (approximation):

$$
\phi(x)=\sum_{n=0}^{N} \breve{f}_{n} T_{n}(x) .
$$

Chebyshev Nodes

Fig. 5.1. Chebyshev points are the projections onto the x-axis of equally spaced points on the unit circle. Note that they are numbered from right to left.

Chebyshev via Fourier

- Changing variables from x to θ we get

$$
\begin{aligned}
\breve{f}_{n>0} & =\frac{2}{\pi} \int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}} \\
& =\int_{-\pi}^{\pi} f(\cos \theta) \cos (n \theta) d \theta \\
& =\int_{-\pi}^{\pi} f(\cos \theta)\left(\frac{\exp (i n \theta)+\exp (-i n \theta)}{2}\right) d \theta .
\end{aligned}
$$

- So if we consider instead of $f(x)$ the function

$$
g(\theta)=f(\cos \theta)
$$

then we can go from Fourier coefficients of g to Chebyshev for f :

$$
\breve{f}_{n>0}=\hat{g}_{-n}+\hat{g}_{n}
$$

Chebyshev-Fourier transformation

Fig. 8.2. The Chebyshev polynomial T_{n} can be interpreted as a sine wave "wrapped around a cylinder and viewed from the side".

Chebyshev via FFT

- This means that we can do FFTs in equispaced points on $\theta \in[0,2 \pi]$ instead of Chebyshev on non-equispaced nodes.
- Note that we want to extend this to $\theta \in[0,2 \pi]$ to be periodic and not $\theta \in[0, \pi]$, so we double the number of points and do the FFTs on vectors of length $2 N$.
- If $f(x)$ can be extended analytically just outside of $[-1,1]$, then we get spectral accuracy.
- Intuition: Chebyshev polynomials are sine waves "wrapped around a cylinder and viewed from the side".
- One can approximate derivatives using the FFT; all that is needed is change of variables from x to θ using the chain rule.
- The chain of variables adds factors of the form $\left(1-x^{2}\right)^{-p / 2}$ (where p is an integer) when converting from Fourier coefficients derivatives of g to derivatives of f.

Conclusions

Function Norms

- Consider a one-dimensional interval $I=[a, b]$. Standard norms for functions similar to the usual vector norms:
- Maximum norm: $\|f(x)\|_{\infty}=\max _{x \in I}|f(x)|$
- L_{1} norm: $\|f(x)\|_{1}=\int_{a}^{b}|f(x)| d x$
- Euclidian L_{2} norm: $\|f(x)\|_{2}=\left[\int_{a}^{b}|f(x)|^{2} d x\right]^{1 / 2}$
- Different function norms are not equivalent!
- An inner or scalar product (equivalent of dot product for vectors):

$$
(f, g)=\int_{a}^{b} f(x) g^{\star}(x) d x
$$

- Formally, function spaces are infinite-dimensional linear spaces. Numerically we always truncate and use a finite basis.

Discrete Function Norms

- Consider a set of m nodes $x_{i}=a+i h$ with a constant grid spacing $h=(b-a) / m$, and evaluate the function at those nodes pointwise

$$
\mathbf{f}=\left\{f\left(x_{0}\right), f\left(x_{1}\right), \cdots, f\left(x_{m}\right)\right\}
$$

- We define the discrete "function norms" and "dot products", with periodic BCs:

$$
\begin{aligned}
\|f(x)\|_{2} & \approx\left[h \sum_{i=0}^{m-1}\left|f\left(x_{i}\right)\right|^{2}\right]^{1 / 2}=\sqrt{h}\|\mathbf{f}\|_{2} \\
\|f(x)\|_{1} & \approx h \sum_{i=0}^{m-1}\left|f\left(x_{i}\right)\right|=h\|\mathbf{f}\|_{1} \\
\|f(x)\|_{\infty} & \approx \max _{i}\left|f\left(x_{i}\right)\right|=\|\mathbf{f}\|_{\infty} \\
(f, g) & \approx \mathbf{f} \cdot \mathbf{g}=h \sum_{i=0}^{m-1} f\left(x_{i}\right) g^{\star}\left(x_{i}\right) .
\end{aligned}
$$

Conclusions/Summary

- Convolution in real space becomes multiplication in Fourier space, and vice versa.
- Spectrally-accurate derivatives $f^{(\nu)}$ of analytic functions f can be done by multiplication by $(i k)^{\nu}$ in Fourier space, zeroing out the unmatched mode for even N and odd ν.
- Not all forms of operators and PDEs equal on paper are equal numerically. Choose the form that preserves the important properties of the continuum PDE: conservation laws, self-Hermitian operators, completeness (this is where understanding PDEs is crucial beyond superficial: functional analysis).
- Nonlinear PDEs can be discretized spectrally in space to a system of coupled nonlinear ODEs. Non-periodic domains can be handled by using orthogonal polynomials but boundary conditions need to be thought about some more!

