
Lecture  1 : Overview & Review of Fourier Analysis

Course webpage: https://math.nyu.edu/faculty/greengar/nm2/nm2.html 


NYU Classes will be used for announcements, submitting homeworks, grades, etc.


Office hours: 7-8 pm Tuesdays, 9-10 am Fridays, or by appointment. 

Grader’s office hours TBD.


Main textbook freely available in PDF format from SIAM website using NYU network/
proxy, as are several of the recommended texts

Many of the homework will be given with MATLAB templates in mind. You are free to 
use other languages but this may require some extra effort in translation… 


Some material drawn from Prof. Donev’s lectures: 

http://cims.nyu.edu/~donev/Teaching/NMII/ 


Numerical Methods II (Spring, 2021) 

 

https://math.nyu.edu/faculty/greengar/nm2/nm2.html
http://cims.nyu.edu/~donev/Teaching/NMII/


Please answer the following questions about background/interests 

and send to me via email as soon as possible.


1. Name, Degree Program, Year in Program, Thesis Advisor and topic (if known)  
2. Previous academic degrees and relevant experience. 
3. Brief statement about background in numerical analysis. 
4. Topics in Numerical Methods II of particular interest.
5. Programming experience  

There will be 5-6 homework assignments (50% of grade), posted on NYU Classes. (First 
assignment due Feb 16.)

Submit the solutions in PDF (with preference for write-ups in LaTex). If you are 
submitting multiple files, please merge all into a single zip file.

There will also be a take-home final/final project (50% of grade) due May 16.
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Academic Integrity 
If you use any external source (including Wikipedia), acknowledge the reference. 

Discussing mathematical issues, algorithms, code design, etc. with classmates is 
encouraged. 

However, your solutions and codes should be written individually, without duplicating/
copying the work of other students (unless a specific homework is assigned as a group 
project - which may happen).

The final or final project should be carried out individually & without collaboration.  

Please review the NYU academic integrity policy.
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http://www.nyu.edu/about/policies-guidelines-compliance/policies-and-guidelines/academic-integrity-for-students-at-nyu.html
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Estimating errors & convergence rates 

(LeVeque Appendix A)

For a target function , finite difference methods produce a set of values  at certain discrete points (equispaced or not).

How can we measure the error in this approximation? I.e. compare a set of discrete values with a function. 
Let  .

Is.      a suitable measure of error?  NO. Each  makes sense as the error at a particular point, but summing N such 

terms doesn’t make sense. What we want is an estimate of .  For equispaced data, this suggests 

. Similarly, for the 2-norm, .  The maximum norm, however, is the same:

U(x) Ui ≈ U(xi)

ei = U(xi) − Ui

∥e∥1 =
N

∑
i=1

|ei | ei

∥E(x)∥1 = ∫
b

a
|E(x) | dx

∥e∥1 = h
N

∑
i=1

|ei | ∥e∥2 = (h
N

∑
i=1

|ei |
2 )

1/2

∥e∥∞ = max
i

|ei |
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Estimating errors & convergence rates 

(LeVeque Appendix A)

Let  denote the (scalar) error in the calculation with grid spacing h, typically some norm of the error over a grid.
, where  is the approximate solution.

The method is pth order accurate if  as  

We’ll write      .
Define     or 

Work with 2 grids :  ,              

What if you don’t know the exact solution?  For this, assume you’ve computed solution with 

  

Thus   .

E(h)
E(h) = ∥U(h) − Û(h)∥ Û(h)

E(h) = Chp + o(hp) h → 0.

E(h) ≈ Chp ⇒ E(h/2) = C(h/2)p

R(h) = E(h)/E(h/2) ⇒ R(h) ≈ 2p p = log2 R(h)

(h1, h2) E(h1) ≈ Chp
1 E(h2) ≈ Chp

2 ⇒ p ≈ log(E(h1)/E(h2))
log(h1/h2)

h, h/2,h/4
̂E(h) ≡ Û(h) − Û(h/2) ≈ C (1 − 1

2p ) hp

̂E(h/2) ≡ Û(h/2) − Û(h/4) ≈ C (1 − 1
2p ) hp

2p

̂E(h)/ ̂E(h/2) ≈ 2p



:::

Peter Olver: Topics in Fourier Analysis:DFT & FFT, Wavelets, Laplace Transform

Cornelius Lanczos: Discourse on Fourier Series

Around 1800, Jean Baptiste Joseph Fourier was studying the PDEs governing heat flow and vibration, and  
hypothesized that any function could be represented by an infinite series of sines and cosines.
Mathematicians at the time found this highly implausible - but much of the modern world relies on this fact: signal 
processing, telecommunications, etc. grew from this observation. Moreover, much of modern mathematics came from 
trying to understand in what sense Fourier’s claim was true.
We will not do this theory justice and will avoid most of the mathematical subtleties. That said, consider a periodic 

function  with period T:  .   Setting ,  we have , so we will assume the 

period is  for convenience.

f(ξ) f(ξ + L) = f(ξ) x = ξ
2π
L

f(x + 2π) = f(x)
2π

Numerical Methods II (Spring, 2021) 
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Periodic Extension

https://www-users.math.umn.edu/~olver/ln_/fal.pdf
https://my.siam.org/Store/Product/viewproduct/?ProductId=27861263
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−π π

f(x) = α0
2 +

∞

∑
n=1

αn cos(nx) + βn sin(nx)
1. Under what conditions does such a series converge?
2. For what functions is such a representation possible?
3. If it is possible, how do we determine ?
4. Can we integrate and differentiate the series?

αn, βn

−π π
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f(x) = α0
2 +

∞

∑
n=1

αn cos(nx) + βn sin(nx) (1)

∫
π

−π
cos(nx) cos(mx) dx =

2π, m = n = 0
π, m = n ≠ 0
0,m ≠ n

= {2π, m = n = 0
π δmn, m = ≠ 0 ∫

π

−π
sin(nx) sin(mx) dx = {0, m = n = 0

π δmn, m = ≠ 0 ∫
π

−π
cos(nx) sin(mx) dx = 0

Orthogonality relations with respect to   inner product:  L2 ⟨ f, g⟩ = 1
π ∫

π

−π
f(x) g(x) dx

Assuming (1) is well-defined and that we can integrate term by term, we have 


,   αn = 1
π ∫

π

−π
f(x) cos(nx) dx βn = 1

π ∫
π

−π
f(x) sin(nx) dx

With this choice of , (1) is the Fourier series of .αn, βn f(x)

Lecture 1: Overview & Review of Fourier Analysis:::
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f(x) = α0
2 +

∞

∑
n=1

αn cos(nx) + βn sin(nx) (1)

α0 = 1
π ∫

0

−π
|sin x | dx + 1

π ∫
π

0
|sin x | dx = 2

π ∫
π

0
|sin x | dx = 4

π

Example 1: f(x) = |sin x |

αn = 2
π ∫

0

−π
|sin x | cos(nx) dx = {− 4

π
1

n2 − 1 , n even
0, n odd

βn = 0 Why?

|sin(x) | = 2
π

− 4
π

∞

∑
n=1

cos(2nx)
4n2 − 1

αn = 0

Example 2: f(x) = x

βn = 2
π ∫

π

−π
x sin(nx) dx = 2 (−1)n+1

n

Why?

2
∞

∑
n=1

(−1)n+1 sin(nx)
n

= {x, − π < x < π
0, x = ± π .
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Example 3: f(x) = Square wave

fSW(x) = 4
π

∞

∑
n=1

sin((2n − 1)x)
2n − 1

1

−1

2π0

Demo

Discontinuous, piecewise smooth

Jump discontinuities lead to convergence in  but not uniform convergence. The error 
in  remains large near the singular point, and the overshoot/undershoot is about 9% of 
the magnitude of the jump (Gibbs phenomenon or ringing). 

L2
L∞

,    αn = 1
π ∫

2π

0
f(x) cos(nx) dx βn = 1

π ∫
2π

0
f(x) sin(nx) dx

Lecture 1: Overview & Review of Fourier Analysis:::
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f(x) =
∞

∑
n=−∞

fneinx

fn = 1
2π ∫

π

−π
f(x)e−inxdx = 1

in
1

2π ∫
π

−π
f′ (x)e−inxdx = … = ( 1

in )
K 1

2π ∫
π

−π
f (K)(x)e−inxdx

assuming .  f ∈ CK

A function  defined on a strip   is -periodic if   in that stripf(z) {z : | Im(z) | < a}, a > 0 2π f(z + 2π) = f(z)

Theorem: If   is periodic and analytic in the strip, then for any , f(z) ϵ | fn | ≤ C(ϵ)e(−a+ϵ)|n|

Theorem: If  , then   decays faster than any finite power of n.f(x) ∈ C∞ | fn |

In many contexts, complex exponentials are 
simpler than real trigonometric functions:

}“Spectrally accurate”

This estimate is not sharp (recall example 2)….

Orthogonal basis,  complex   inner 


product:  

L2

⟨ f, g⟩ = 1
π ∫

π

−π
f(x) g*(x) dx

Many possible symmetries: e.g. if   is real, then  f(x) f−n = f*n

Lecture 1: Overview & Review of Fourier Analysis:::



The set of discrete Fourier coefficients  is the discrete spectrum

The set  is the power spectrum

{fn}
{ | fn |2 }

∫
2π

0
| f(x) |2 dx = 2π

∞

∑
n=−∞

| fn |2

Numerical Methods II (Spring, 2021) 

f(x) =
∞

∑
n=−∞

fneinx

Why do we want to use a Fourier basis for representing functions?

Approximation/interpolation


Differentiation:              Is this allowed?


Integration:                   Is this allowed?


Solving initial-boundary value problems


Filtering:    DEMO                

f (k)(x) =
∞

∑
n=−∞

(in)k fneinx

∫ f(x) =
∞

∑
n = − ∞

n ≠ 0

fn
in

einx + C

1.Need to sample 

2. Need to be able to compute  

3. Need to understand accuracy

f(x)
fn

Lecture 1: Overview & Review of Fourier Analysis:::
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f(x) ≈
N/2−1

∑
n=−N/2

fneinx

2π0

assuming N is even. [  e.g. for N=8, we have:    ]. 
{f−4, f−3, f−2, f−1, f0, f1, f2, f3}

Since  is an orthogonal basis for , this is the best least-squares approximation in the span of the 
corresponding basis functions. 


{einx} L2

x      x      x      x      x      x      x      x      x      o

xj = 2πj/N, j = 0,…, N − 1

Let  with  and  

let 

f ∈ ℂN fj = f(xj)

(f, g) =
N−1

∑
j=0

f(xj)g*(xj)

Claim:  Let  with  .   Then .       
(Discrete orthogonality)

Φn ∈ ℂN (Φn)j = einxj (Φn, Φm) = Nδn,m

Now let’s discretize the interval:


Lecture 1: Overview & Review of Fourier Analysis:::
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2π0
x      x      x      x      x      x      x      x      x      o

xj = 2πj/N, j = 0,…, N − 1

The Fourier interpolating polynomial is defined by  .       Interpolation means that we 

want to solve the linear system  .


From orthogonality, we have      In linear algebraic notation, we have


, where   is the  matrix whose columns are given by . 


PN(x) =
N/2−1

∑
n=−N/2

̂fneinx

N/2−1

∑
n=−N/2

̂fneinxj = f(xj)

̂fn = 1
N

(f, Φn) = 1
N

N−1

∑
j=0

f(xj)e−inxj .

̂fn = 1
N

1*f 1 N × N
einx0

einx1
…

einxN−1

BAD NEWS:    Did you notice the indexing nightmare? Are you worried about the  mode?−N/2
GOOD NEWS:  Because of orthogonality,  we only have to apply 1* ⇒ O(N2) work, not O(N3) .

Lecture 1: Overview & Review of Fourier Analysis:::

Version 1
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2π0
x      x      x      x      x      x      x      x      x      o

xj = 2πj/N, j = 0,…, N − 1

Who cares about interpolating polynomials? 


We’re doing Fourier analysis, and already believe that   .fn = 1
2π ∫

π

−π
f(x)e−inxdx = 1

2π ∫
2π

0
f(x)e−inxdx

But, applying the trapezoidal rule, we have  , since fn ≈ ̂fn = 1
2π

N−1

∑
j=0

f(xj)e−inxj h = 1
N

N−1

∑
j=0

f(xj)e−inxj

h = 2π
N

.

Version 2

So -  the coefficients of the interpolating polynomial are approximations of the true Fourier coefficients.
We still have work to do in understanding accuracy and in making the approach fast.

Lecture 1: Overview & Review of Fourier Analysis:::
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2π0
x      x      x      x      x      x      x      x      x      o

xj = 2πj/N, j = 0,…, N − 1

The Trapezoidal Rule is Spectrally Accurate for smooth, periodic functions

Lecture 1: Overview & Review of Fourier Analysis:::

Further reading:     https://people.maths.ox.ac.uk/trefethen/publication/PDF/2014_150.pdf

∫
b

a
f(x)dx = h [ f(a)

2 + f(a + h) + … + f(b − h) + f(b)
2 ] −

p−1

∑
r=1

hr+1Br+1
(r + 1)! [ f (r)(b) − f (r)(a)] + O(hp+1)

assuming  f ∈ Cp

Thus (for smooth functions) not only is the Fourier series an extremely accurate and efficient 
approximation, it is computed to very high order accuracy using nothing more than the trapezoidal 
rule. For non-smooth functions, sampling at equispaced points and using our earlier formula still 
yields the interpolating trigonometric polynomial - but coefficients will no longer be good 
approximations of the true Fourier coefficients. [They can still be computed, but with more 
complicated techniques.]

Euler-McLaurin Formula
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2π0
x      x      x      x      x      x      x      x      x      o

xj = 2πj/N, j = 0,…, N − 1

The Trapezoidal Rule io Exact for trigonometric polynomials of degree ≤ N − 1

Lecture 1: Overview & Review of Fourier Analysis:::

∫
b

a
f(x)dx = h [f(a) + f(a + h) + … + f(b − h)] for f(x) =

N−1

∑
n=0

an cos(nx) + bn sin(nx)

1. What is a rule called if it integrates 2N functions exactly using only N nodes? 
2. So, suppose you know f(x) is band-limited with band-limit N. How many points do you need 

on  to get the exact Fourier coefficients?    (2N !)
3. Put differently, if a function is band-limited at frequency N, then 2N points are sufficient to 

represent (and interpolate) the function exactly. (That is the essence of the Shannon-Nyquist 
sampling theorem - which holds for the Fourier transform and functions on the real line as well.) 
In this case, .

4. What happens if you use 2N points but f(x) has frequency content beyond N modes?  Aliasing

[0,2π]

̂fn = fn
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2π0
x      x      x      x      x      x      x      x      x      o

xj = 2πj/N, j = 0,…, N − 1

Aliasing

Lecture 1: Overview & Review of Fourier Analysis:::

Let N = 2n + 1

Note that   so that we may write   

 

eikxj = ei(k+mN)xj f(xj) =
∞

∑
k=−∞

fk eikxj =
n

∑
k=−n

∞

∑
m=−∞

fk+mN ei(k+mN)xj

=
n

∑
k=−n (

∞

∑
m=−∞

fk+mN) eikxj ⇒ ̂fk =
∞

∑
m=−∞

fk+mN

(Poisson Summation Formula)

Recall the interpolating polynomial  and the truncated Fourier series  PN(x) =
n

∑
k=−n

̂fkeikx FN(x) =
n

∑
k=−n

fkeikx

 | ̂fk − fk | ≤
∞

∑
m = − ∞

m ≠ 0

| fk+mN |
(Aliasing error)



Trigonometric Orthogonal Polynomials

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, . . .

A. Donev (Courant Institute) FFT 1/29/2019 20 / 40
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Multiplication

Lecture 1: Overview & Review of Fourier Analysis:::

What is the Fourier series for ?

 

h(x) = f(x) g(x)

h(x) =
n

∑
k=−n

fk eikx
n

∑
j=−n

gj eijx =
n

∑
k=−n

n

∑
j=−n

fk gj ei( j+k)x =
2n

∑
m=−2n

hm eimx hm =
n

∑
k=−n

fk gm−k

m = − 2n, …,2n

Linear convolution 
 

N = 2n + 1

The linear (aperiodic) convolution of two sequences of length N is a

sequence of length 2N-1.


Sampling  with only N points can introduce aliasing error 

 

h(x)

Suppose that  and that .


 

f(x) =
n

∑
k=−n

fkeikx g(x) =
n

∑
k=−n

gkeikx

https://www.mathworks.com/help/signal/ug/linear-and-circular-convolution.html
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Periodic Convolution

Lecture 1: Overview & Review of Fourier Analysis:::

The Fourier series for  is .   Proof (Exercise). 

 

h(x) hn = fn gn

Suppose that and that  are continuous periodic functions. Their periodic 

convolution is  =  .

f(x), g(x) (2π)−
h(x) = ( f * g)(x) 1

2π ∫
π

−π
f(x − y) g(y) dy

Thus, if you had a fast algorithm to compute  from  and a fast algorithm to compute 

 from , you can do fast periodic convolution.

fn, gn f(x), g(x)
h(x) hn = fn gn
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The Discrete Fourier transform (DFT)

Lecture 1: Overview & Review of Fourier Analysis:::

So, we can identify:   with 
{ ̂f−4, ̂f−3, ̂f−2, ̂f−1, ̂f0, ̂f1, ̂f2, ̂f3} { ̂f0, ̂f1, ̂f2, ̂f3, ̂f4, ̂f5, ̂f6, ̂f7}

    for  
f(xj) =
N/2−1

∑
n=−N/2

̂fn einxj =
N/2−1

∑
n=−N/2

̂fn e2πinj/N j = 0,…, N − 1

Re-indexing: Note that   
 

e2πinj/N = e2πij e2πinj/N = e2πi(n+N)j/N

Standard form for DFT:       for  
fj =
N−1

∑
n=0

Fn einxj =
N−1

∑
n=0

Fn e2πinj/N j = 0,…, N − 1

“Fourier synthesis”
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The Fast Fourier transform (FFT)

Lecture 1: Overview & Review of Fourier Analysis:::

Standard form for DFT:       for  
fj = =
N−1

∑
n=0

Fn e2πinj/N j = 0,…, N − 1

Suppose .     Then          
N = 2K fj =
N−1

∑
n=0

Fn e2πinj/N =
N/2−1

∑
n=0

F2n e2πinj/(N/2) + e2πij/N
N/2−1

∑
n=0

F2n+1 e2πinj/(N/2)

⏟ ⏟DFT of size N/2 on 

even terms F2n

DFT of size N/2 on 

odd terms F2n+1

N2 ops

(N2/2) + N ops

Continuing this recursion for  levels yields an  algorithm. log2 N O(N log2 N)

Standard form for normalized adjoint DFT:       for  
Fn = 1
N

N−1

∑
j=0

f(xj) einxj = 1
N

N−1

∑
j=0

fj e2πinj/N n = 0,…, N − 1



Periodicity in Higher Dimensions

2π

2π

0
0

f(x, y) =
∞

∑
n=−∞

∞

∑
m=−∞

fn,mei(nx+my)

fn,m ≈ ̂fn,m = ( 1
2π )

2 Nx−1

∑
j=0

Ny−1

∑
k=0

f(xj, yk)e−i(nxj+myk) h2 = 1
NxNy

Nx−1

∑
j=0

Ny−1

∑
k=0

f(xj, yk)e−2πinje−2πimk

= 1
Nx

Nx−1

∑
j=0

e−2πinj 1
Ny

Ny−1

∑
k=0

f(xj, yk)e−2πimk
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For nonperiodic functions, Fourier series are no longer applicable and we will need to 
make use of the Fourier transform:  

̂f(s) = ℱ[ f ](s) = ∫
∞

−∞
f(x)e−2πisxdx f(x) = ℱ−1[ ̂f ](x) = ∫

∞

−∞
̂f(s)e2πisxds

Frequency domain As with complex Fourier series, there are many symmetries possible::    
e.g. if   is real, then  .  If  is even or odd, so is .f(x) ̂f(s) = ̂f(−s)* f(x) ̂f(s)
ℱ[ f (K)](s) = (2πis)K ̂f(s)

Convolution theorem:   If , then  h(x) = ( f * g)(x) = ∫
∞

−∞
f(y) g(x − y)dy ĥ(s) = ̂f(s) ⋅ ̂g(s)

Lecture 1: Overview & Review of Fourier Analysis:::
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Summary 1

Lecture 1: Overview & Review of Fourier Analysis:::

Periodic functions are naturally represented in terms of trigonometric functions (or complex exponentials). 

This permits easy differentiation, integration and interpolation and filtering.


The convergence rate is determined by the smoothness of the function (including its periodic extension). If 
 (or analytic), the convergence rate is spectral or superalgebraic. 

If , then the truncated Fourier approximation converges at a rate of the order . 


Once  is continuously differentiable, the convergence is uniform.


If  is discontinuous, but piecewise smooth, the Fourier series converses in  but not uniformly (Gibbs 
phenomenon). Much of modern analysis grew out of understanding this convergence theory.

•   Carleson’s Theorem (1966!): The Fourier expansion of any function in L2 converges almost everywhere

•   Kahane, Katznelson (1965):  For any given set E of measure zero, there exists a  continuous function ƒ such              

that the Fourier series of ƒ fails to converge on any point of E. 


In numerical analysis, these considerations are secondary. What we require is tools that:

(a) identify the structure of the solution, (b) monitor the convergence process, (c) estimate the error and (d) 
compute the solution quickly and without user intervention.

f(x) ∈ C∞

f(x) ∈ CK o ( 1
NK )

f(x)

f(x) L2
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Lecture 1: Overview & Review of Fourier Analysis:::

Without periodicity, smooth functions are naturally (and historically) represented in a polynomial (or piecewise 
polynomial) basis. This topic was covered in Numerical Methods 1 (also, Appendix B in LeVeque’s text).

If  is a weight function on an interval  (positive, integrable, etc.), it induces an inner product:

 

and a sequence of orthogonal polynomials   of increasing degree with .

In this class, we will care most about Chebyshev and Legendre polynomials:

w(x) [a, b]

( f, g) = ∫
b

a
f(x) g(x) w(x) dx

50, 51, …, 5n, . . . (5n, 5m) = 0 for m ≠ n

Smooth functions on an interval

Legendre:       and . [a, b] = [−1,1] w(x) = 1 (n + 1)Pn+1(x) = (2n + 1)x Pn(x) − nPn−1(x) .

P0 = 1, P1 = x, P2 = 3
2 x2 − 1

2 , P3 = 5
2 x3 − 3

2 x, …

Chebyshev:       and . [a, b] = [−1,1] w(x) = 1/ 1 − x2 Tn+1(x) = 2x Tn(x) − Tn−1(x) .

T0 = 1, T1 = x, T2 = 2x2 − 1, T3 = 4x3 − 3x, …
Tm(cos θ) = cos(mθ) .
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Lecture 1: Overview & Review of Fourier Analysis:::

Why are the Legendre and Chebyshev bases good for smooth functions?

Suppose we let  or  on the interval  and that .

Then     - just like for the Fourier series approximation of a smooth periodic function.

And the aproximation error is    or better.     [Homework 1].

And again: If  (or analytic), the convergence rate is spectral or superalgebraic.

f(x) =
∞

∑
n=0

anPn(x) f(x) =
∞

∑
n=0

cnTn(x) [−1,1] f(x) ∈ CK

an, cn = O ( 1
nK )

O ( 1
nK−1 )

f(x) ∈ C∞

Smooth functions on an interval

Approximation/interpolation

Differentiation:         

Integration:         

Solving initial-boundary value problems

Filtering                

1.Need to sample 

2. Need to be able to compute  

f(x)
an, cn
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Lecture 1: Overview & Review of Fourier Analysis:::

Recall that the trapezoidal rule with N points integrates 2N-1 trigonometric functions exactly.

Using a Chebyshev basis  and the inner product

, 

we have 

Let’s put an equispace grid on the latter interval   Let’s try:  
 

                                   

This is a spectrally accurate quadrature scheme (Why?) and can be computed using the FFT.

One can also use the “classical” Chebyshev nodes: 

f(x) = 1
2 c0T0(x) + c1T1(x) + … + cnTn(x) + …

( f, g) = ∫
1

−1
f(x) g(x) (1 − x2)−1/2 dx

ck = 2
π ∫

1

−1
f(x) Tk(x) (1 − x2)−1/2 dx = 2

π ∫
π

0
f(cos θ) cos(kθ) dθ .

[0,π] : θn = nπ/N for n = 0,…, N .

ck ≈ 2
N ( f(1)

2 + f(−1)
2 (−1)k +

N−1

∑
n=1

f(cos θn)cos(nkπ/N))

θn =
(n + 1

2 )π
N

for n = 0,…, N − 1.

Clenshaw-Curtis Quadrature
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Lecture 1: Overview & Review of Fourier Analysis:::

Using a Legendre basis  it can be shown that.  

We have 

We’d like a spectrally accurate quadrature scheme for this but have no recourse to periodic tricks.

Thus, we want a rule of the form:    to be exact for polynomials of degree up to 

2N-1.Gauss showed that this can be accomplished by choosing  as the roots of  and the weights   

            ,                                       

GOOD NEWS: There are recent fast algorithms for computing  in linear time.

BAD NEWS:    A fast transform for    is more involved than the FFT or FCT.

What are possible reasons for wanting to use the Legendre basis instead of the Chebyshev basis?

f(x) =
∞

∑
n=0

anPn(x) (Pn, Pm) = ∫
1

−1
Pn(x) Pm(x) dx = 2

2n + 1 δnm .

ak = 2k + 1
2 ∫

1

−1
f(x) Pk(x) dx

∫
1

−1
f(x) dx =

N

∑
n=1

wn f(xn)

xn PN(x)

wn = 2
(1 − x2n)[P′ N(xn)]2 En = (b − a)2n+1(n!)4

(2n + 1)[(2n!)]3 f (2n)(ξ)

{xn, wn}

ak = 2k + 1
2

N

∑
n=1

f(xn) Pk(xn)wn

Gaussian Quadrature
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Adaptive Quadrature
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FIG. 5. The adaptive solution of the potential barrier problem (Example 4).

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

ErrEst(step)

x-1 -0.5 0 0.5 1

refinement
step- 3

- 6
- 9

- 12
- 15

Cusp u(x)

 0.5

 1

 1.5

 2

-2 0 2
x 10-2

0

0.05

0.1

FIG. 6. The adaptive solution of the cusp problem (Example 5).

422 JUNE-YUB LEE AND LESLIE GREENGARD

10-10

10-8

10-6

10-4

10-2

100

102

104

ErrEst(step)

x-1 -0.5 0 0.5 1

refinement
step- 2

- 4
- 6

- 8
- 10

- 12

Potential barrier u(x)

 -6

 -4

 -2

 0

 2

 4

 6

-0.54 -0.53 -0.52

1.5

2

2.5

FIG. 5. The adaptive solution of the potential barrier problem (Example 4).

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

ErrEst(step)

x-1 -0.5 0 0.5 1

refinement
step- 3

- 6
- 9

- 12
- 15

Cusp u(x)

 0.5

 1

 1.5

 2

-2 0 2
x 10-2

0

0.05

0.1

FIG. 6. The adaptive solution of the cusp problem (Example 5).

FAST ADAPTIVE METHOD FOR STIFF TWO-POINT BVPs 421
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FIG. 4. The adaptive solution of a turning point problem (Example 3). In this case, the
magnified window examines the boundary layer at x = 1.

with boundary conditions

u(°1) = 1; u(1) = 2,

with w = 0.5. Figure 5 summarizes the adaptive calculation for ≤ = 10
°6

. To measure

accuracy, we have chosen as an “exact” solution the one obtained by doubling the last

mesh produced by the algorithm.

Example 5 (Cusp). The problem

≤u00
(x) + xu0

(x) ° 1

2
u(x) = 0,

with

u(°1) = 1; u(1) = 2,

has a cusplike structure at the origin. The exact solution is

u(x) =
3

2

M(° 1
4 , 1

2 ,°x2

2≤ )

M(° 1
4 , 1

2 ,° 1
2≤ )

+
1

2
x

M(
1
4 , 3

2 ,°x2

2≤ )

M(
1
4 , 3

2 ,° 1
2≤ )

,

where M is a parabolic cylinder function [1]. Figure 6 summarizes the adaptive

calculation for ≤ = 10
°10

. Since the exact solution is di±cult to evaluate directly, we

proceed as in Example 4. In other words, we choose as an “exact” solution the one

obtained by doubling the last mesh produced by the algorithm.

-> SKETCH
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Adaptive quadrature

f= @(x) -sqrt(x)*log(x)+sin(20*x) 
a= 10^(-8); b = pi; 
q= quadgui(f,a,b)
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Boundary Value Problems 

Periodic boundary value problems: Constant coefficient vs variable coefficient problems.

Spectral vs pseudospectral methods. Setting up the linear system.


