Lecture 1 : Overview \& Review of Fourier Analysis

Course webpage: https://math.nyu.edu/faculty/greengar/nm2/nm2.htm|
NYU Classes will be used for announcements, submitting homeworks, grades, etc.
Office hours: 7-8 pm Tuesdays, 9-10 am Fridays, or by appointment. Grader's office hours TBD.

Main textbook freely available in PDF format from SIAM website using NYU network/ proxy, as are several of the recommended texts Many of the homework will be given with MATLAB templates in mind. You are free to use other languages but this may require some extra effort in translation...

Some material drawn from Prof. Donev's lectures:
http://cims.nyu.edu/~donev/Teaching/NMII/

Lecture 1 : Overview \& Review of Fourier Analysis

Please answer the following questions about background/interests and send to me via email as soon as possible.

1. Name, Degree Program, Year in Program, Thesis Advisor and topic (if known)
2. Previous academic degrees and relevant experience.
3. Brief statement about background in numerical analysis.
4. Topics in Numerical Methods II of particular interest.
5. Programming experience

There will be 5-6 homework assignments (50\% of grade), posted on NYU Classes. (First assignment due Feb 16.)
Submit the solutions in PDF (with preference for write-ups in LaTex). If you are submitting multiple files, please merge all into a single zip file.
There will also be a take-home final/final project (50% of grade) due May 16.

Lecture 1 : Overview \& Review of Fourier Analysis

Academic Integrity

If you use any external source (including Wikipedia), acknowledge the reference.
Discussing mathematical issues, algorithms, code design, etc. with classmates is encouraged.
However, your solutions and codes should be written individually, without duplicating/ copying the work of other students (unless a specific homework is assigned as a group project - which may happen).
The final or final project should be carried out individually \& without collaboration.

Please review the NYU academic integrity policy.

Estimating errors \& convergence rates

(LeVeque Appendix A)

For a target function $U(x)$, finite difference methods produce a set of values $U_{i} \approx U\left(x_{i}\right)$ at certain discrete points (equispaced or not).
How can we measure the error in this approximation? I.e. compare a set of discrete values with a function.
Let $e_{i}=U\left(x_{i}\right)-U_{i}$.
Is. $\|e\|_{1}=\sum_{i=1}^{N}\left|e_{i}\right|$ a suitable measure of error? NO. Each e_{i} makes sense as the error at a particular point, but summing N such terms doesn't make sense. What we want is an estimate of $\|E(x)\|_{1}=\int_{a}^{b}|E(x)| d x$. For equispaced data, this suggests
$\|e\|_{1}=h \sum_{i=1}^{N}\left|e_{i}\right|$. Similarly, for the 2-norm, $\|e\|_{2}=\left(h \sum_{i=1}^{N}\left|e_{i}\right|^{2}\right)^{1 / 2}$. The maximum norm, however, is the same: $\|e\|_{\infty}=\max _{i}\left|e_{i}\right|$

Estimating errors \& convergence rates

(LeVeque Appendix A)

Let $E(h)$ denote the (scalar) error in the calculation with grid spacing h, typically some norm of the error over a grid. $E(h)=\|U(h)-\hat{U}(h)\|$, where $\hat{U}(h)$ is the approximate solution.
The method is p th order accurate if $E(h)=C h^{p}+o\left(h^{p}\right)$ as $h \rightarrow 0$.

We'll write $E(h) \approx C h^{p} \quad \Rightarrow \quad E(h / 2)=C(h / 2)^{p}$.
Define $R(h)=E(h) / E(h / 2) \Rightarrow R(h) \approx 2^{p}$ or $p=\log _{2} R(h)$
Work with 2 grids $\left(h_{1}, h_{2}\right): E\left(h_{1}\right) \approx C h_{1}^{p}, E\left(h_{2}\right) \approx C h_{2}^{p} \quad \Rightarrow p \approx \frac{\log \left(E\left(h_{1}\right) / E\left(h_{2}\right)\right)}{\log \left(h_{1} / h_{2}\right)}$
What if you don't know the exact solution? For this, assume you've computed solution with $h, h / 2, h / 4$
$\hat{E}(h) \equiv \hat{U}(h)-\hat{U}(h / 2) \approx C\left(1-\frac{1}{2^{p}}\right) h^{p}$
$\hat{E}(h / 2) \equiv \hat{U}(h / 2)-\hat{U}(h / 4) \approx C\left(1-\frac{1}{2^{p}}\right) \frac{h^{p}}{2^{p}}$
Thus $\hat{E}(h) / \hat{E}(h / 2) \approx 2^{p}$.

Lecture 1 : Overview \& Review of Fourier Analysis

Around 1800, Jean Baptiste Joseph Fourier was studying the PDEs governing heat flow and vibration, and hypothesized that any function could be represented by an infinite series of sines and cosines.
Mathematicians at the time found this highly implausible - but much of the modern world relies on this fact: signal processing, telecommunications, etc. grew from this observation. Moreover, much of modern mathematics came from trying to understand in what sense Fourier's claim was true.
We will not do this theory justice and will avoid most of the mathematical subtleties. That said, consider a periodic function $f(\xi)$ with period $\mathrm{T}: f(\xi+L)=f(\xi)$. Setting $x=\xi \frac{2 \pi}{L}$, we have $f(x+2 \pi)=f(x)$, so we will assume the period is 2π for convenience.

Periodic Extension \longrightarrow

Peter Olver: Topics in Fourier Analysis:DFT \& FFT, Wavelets, Laplace Transform
Cornelius Lanczos: Discourse on Fourier Series

$$
f(x)=\frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty} \alpha_{n} \cos (n x)+\beta_{n} \sin (n x)
$$

$$
-\pi
$$

1. Under what conditions does such a series converge?
2. For what functions is such a representation possible?
3. If it is possible, how do we determine α_{n}, β_{n} ?
4. Can we integrate and differentiate the series?

$$
\begin{equation*}
f(x)=\frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty} \alpha_{n} \cos (n x)+\beta_{n} \sin (n x) \tag{1}
\end{equation*}
$$

Orthogonality relations with respect to L_{2} inner product: $\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$

$$
\int_{-\pi}^{\pi} \cos (n x) \cos (m x) d x=\left\{\begin{array}{l}
2 \pi, m=n=0 \\
\pi, m=n \neq 0 \\
0, m \neq n
\end{array} \quad=\left\{\begin{array}{l}
2 \pi, m=n=0 \\
\pi \delta_{m n}, m=\neq 0
\end{array} \left\lvert\, \int_{-\pi}^{\pi} \sin (n x) \sin (m x) d x=\left\{\begin{array}{l}
0, m=n=0 \\
\pi \delta_{m n}, m=\neq 0
\end{array} \quad \int_{-\pi}^{\pi} \cos (n x) \sin (m x) d x=0\right.\right.\right.\right.
$$

Assuming (1) is well-defined and that we can integrate term by term, we have

$$
\alpha_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \beta_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

With this choice of $\alpha_{n}, \beta_{n},(1)$ is the Fourier series of $f(x)$.

$$
\begin{equation*}
f(x)=\frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty} \alpha_{n} \cos (n x)+\beta_{n} \sin (n x) \tag{1}
\end{equation*}
$$

Example 1: $f(x)=|\sin x|$
$\alpha_{0}=\frac{1}{\pi} \int_{-\pi}^{0}|\sin x| d x+\frac{1}{\pi} \int_{0}^{\pi}|\sin x| d x=\frac{2}{\pi} \int_{0}^{\pi}|\sin x| d x=\frac{4}{\pi}$
$\alpha_{n}=\frac{2}{\pi} \int_{-\pi}^{0}|\sin x| \cos (n x) d x= \begin{cases}-\frac{4}{\pi} \frac{1}{n^{2}-1}, & n \text { even } \\ 0, & n \text { odd }\end{cases}$
$\beta_{n}=0 \quad$ Why?

$$
|\sin (x)|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n x)}{4 n^{2}-1}
$$

Demo

Example 2: $f(x)=x$

$$
\begin{aligned}
& \alpha_{n}=0 \quad \text { Why? } \\
& \beta_{n}=\frac{2}{\pi} \int_{-\pi}^{\pi} x \sin (n x) d x=2 \frac{(-1)^{n+1}}{n}
\end{aligned}
$$

$$
2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n x)}{n}= \begin{cases}x, & -\pi<x<\pi \\ 0, & x= \pm \pi\end{cases}
$$

Example 3: $f(x)=$ Square wave

$$
f_{S W}(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x)}{\underbrace{2 n}-1} \quad \longrightarrow \quad \text { Demo }
$$

Discontinuous, piecewise smooth

Jump discontinuities lead to convergence in L_{2} but not uniform convergence. The error in L_{∞} remains large near the singular point, and the overshoot/undershoot is about 9% of the magnitude of the jump (Gibbs phenomenon or ringing).

In many contexts, complex exponentials are simpler than real trigonometric functions:

$$
f(x)=\sum_{n=-\infty}^{\infty} f_{n} e^{i n x}
$$

Orthogonal basis, complex L_{2} inner product: $\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g^{*}(x) d x$

$$
f_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{i n} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(x) e^{-i n x} d x=\ldots=\left(\frac{1}{i n}\right)^{K} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{(K)}(x) e^{-i n x} d x
$$

assuming $f \in C^{K} . \quad$ This estimate is not sharp (recall example 2)....

A function $f(z)$ defined on a strip $\{z:|\operatorname{Im}(z)|<a\}, a>0$ is 2π-periodic if $f(z+2 \pi)=f(z)$ in that strip

Theorem: If $f(z)$ is periodic and analytic in the strip, then for any $\epsilon,\left|f_{n}\right| \leq C(\epsilon) e^{(-a+\epsilon)|n|}$
Theorem: If $f(x) \in C^{\infty}$, then $\left|f_{n}\right|$ decays faster than any finite power of n.

Many possible symmetries: e.g. if $f(x)$ is real, then $f_{-n}=f_{n}^{*}$
$f(x)=\sum_{n=-\infty}^{\infty} f_{n} e^{i n x}$
The set of discrete Fourier coefficients $\left\{f_{n}\right\}$ is the discrete spectrum The set $\left\{\left|f_{n}\right|^{2}\right\}$ is the power spectrum
$\int_{0}^{2 \pi}|f(x)|^{2} d x=2 \pi \sum_{n=-\infty}^{\infty}\left|f_{n}\right|^{2}$

Why do we want to use a Fourier basis for representing functions?

Approximation/interpolation
Differentiation: $\quad f^{(k)}(x)=\sum_{n=-\infty}^{\infty}(i n)^{k} f_{n} e^{i n x} \quad$ Is this allowed?
Integration: $\quad \int f(x)=\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{f_{n}}{i n} e^{i n x}+C \quad$ Is this allowed?

1. Need to sample $f(x)$
2. Need to be able to compute f_{n}
3. Need to understand accuracy

Solving initial-boundary value problems
Filtering: DEMO

$$
f(x) \approx \sum_{n=-N / 2}^{N / 2-1} f_{n} e^{i n x}
$$

$$
\text { assuming } \left.\mathrm{N} \text { is even. [e.g. for } \mathrm{N}=8 \text {, we have: }\left\{f_{-4}, f_{-3}, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, f_{3}\right\}\right] \text {. }
$$

Since $\left\{e^{i n x}\right\}$ is an orthogonal basis for L_{2}, this is the best least-squares approximation in the span of the corresponding basis functions.

Now let's discretize the interval:

$$
\begin{aligned}
& \text { Let } \mathbf{f} \in \mathbb{C}^{N} \text { with } \mathbf{f}_{j}=f\left(x_{j}\right) \text { and } \\
& \text { let }(\mathbf{f}, \mathbf{g})=\sum_{j=0}^{N-1} f\left(x_{j}\right) g^{*}\left(x_{j}\right)
\end{aligned}
$$

Claim: Let $\Phi_{n} \in \mathbb{C}^{N}$ with $\left(\Phi_{n}\right)_{j}=e^{i n x_{j}}$. Then $\left(\Phi_{n}, \Phi_{m}\right)=N \delta_{n, m}$. (Discrete orthogonality)

Version 1

The Fourier interpolating polynomial is defined by $P_{N}(x)=\sum_{n=-N / 2}^{N / 2-1} \hat{f}_{n} e^{i n x} . \quad$ Interpolation means that we want to solve the linear system $\sum_{n=-N / 2}^{N / 2-1} \hat{f}_{n} e^{i n x_{j}}=f\left(x_{j}\right)$.
From orthogonality, we have $\hat{f}_{n}=\frac{1}{N}\left(\mathbf{f}, \Phi_{n}\right)=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{-i n x_{j}} . \quad$ In linear algebraic notation, we have $\hat{f}_{n}=\frac{1}{N} \mathscr{D} * \mathbf{f}$, where \mathscr{D} is the $N \times N$ matrix whose columns are given by $\left(\begin{array}{c}e^{i n x_{0}} \\ e^{i n x_{1}} \\ \cdots \\ e^{i n x_{N-1}}\end{array}\right)$
BAD NEWS: Did you notice the indexing nightmare? Are you worried about the $-N / 2$ mode? GOOD NEWS: Because of orthogonality, we only have to apply $\mathscr{D}^{*} \Rightarrow O\left(N^{2}\right)$ work, not $O\left(N^{3}\right)$.

Versian 2

Who cares about interpolating polynomials?
We're doing Fourier analysis, and already believe that $f_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x$.
But, applying the trapezoidal rule, we have $f_{n} \approx \hat{f}_{n}=\frac{1}{2 \pi} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{-i n x_{j}} h=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{-i n x_{j}}$, since $h=\frac{2 \pi}{N}$.

So - the coefficients of the interpolating polynomial are approximations of the true Fourier coefficients. We still have work to do in understanding accuracy and in making the approach fast.

The Trapezoidal Rule is Spectrally Accurate for smooth, periodic functions

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=h\left[\frac{f(a)}{2}+f(a+h)+\ldots+f(b-h)+\frac{f(b)}{2}\right]-\sum_{r=1}^{p-1} \frac{h^{r+1} B_{r+1}}{(r+1)!}\left[f^{(r)}(b)-f^{(r)}(a)\right]+O\left(h^{p+1}\right) \\
\text { assuming } f \in C^{p} \\
\text { Euler-WCLaurin Farmula }
\end{gathered}
$$

Thus (for smooth functions) not only is the Fourier series an extremely accurate and efficient approximation, it is computed to very high order accuracy using nothing more than the trapezoidal rule. For non-smooth functions, sampling at equispaced points and using our earlier formula still yields the interpolating trigonometric polynomial - but coefficients will no longer be good approximations of the true Fourier coefficients. [They can still be computed, but with more complicated techniques.]

Further reading: https://people.maths.ox.ac.uk/trefethen/publication/PDF/2014_150.pdf

The Trapezoidal Rule io Exact for trigonometric polynomials of degree $\leq N-1$

$$
\int_{a}^{b} f(x) d x=h[f(a)+f(a+h)+\ldots+f(b-h)] \text { for } f(x)=\sum_{n=0}^{N-1} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

1. What is a rule called if it integrates 2 N functions exactly using only N nodes?
2. So, suppose you know $f(x)$ is band-limited with band-limit N. How many points do you need on $[0,2 \pi]$ to get the exact Fourier coefficients? (2 N !)
3. Put differently, if a function is band-limited at frequency N , then 2 N points are sufficient to represent (and interpolate) the function exactly. (That is the essence of the Shannon-Nyquist sampling theorem - which holds for the Fourier transform and functions on the real line as well.) In this case, $\hat{f}_{n}=f_{n}$.
4. What happens if you use 2 N points but $\mathrm{f}(\mathrm{x})$ has frequency content beyond N modes? Aliasing

Aliasing

$$
x_{j}=2 \pi j / N, \quad j=0, \ldots, N-1
$$

Recall the interpolating polynomial $P_{N}(x)=\sum_{k=-n}^{n} \hat{f}_{k} e^{i k x}$ and the truncated Fourier series $F_{N}(x)=\sum_{k=-n}^{n} f_{k} e^{i k x}$

Note that $e^{i k x_{j}}=e^{i(k+m N) x_{j}}$ so that we may write $f\left(x_{j}\right)=\sum_{k=-\infty}^{\infty} f_{k} e^{i k x_{j}}=\sum_{k=-n}^{n} \sum_{m=-\infty}^{\infty} f_{k+m N} e^{i(k+m N) x_{j}}$

$$
\Rightarrow \hat{f}_{k}=\sum_{m=-\infty}^{\infty} f_{k+m N}
$$

(Poisson Summation Formula)

Multiplication

Suppose that $f(x)=\sum_{k=-n}^{n} f_{k} e^{i k x}$ and that $g(x)=\sum_{k=-n}^{n} g_{k} e^{i k x} . \quad N=2 n+1$

What is the Fourier series for $h(x)=f(x) g(x)$?

$$
h(x)=\sum_{k=-n}^{n} f_{k} e^{i k x} \sum_{j=-n}^{n} g_{j} e^{i j x}=\sum_{k=-n}^{n} \sum_{j=-n}^{n} f_{k} g_{j} e^{i(j+k) x}=\sum_{m=-2 n}^{2 n} h_{m} e^{i m x}
$$

$$
h_{m}=\sum_{k=-n}^{n} f_{k} g_{m-k}
$$

$$
m=-2 n, \ldots, 2 n
$$

The linear (aperiodic) convolution of two sequences of length N is a sequence of length $2 \mathrm{~N}-1$.

Linear convolution

Sampling $h(x)$ with only N points can introduce aliasing error
https://www.mathworks.com/help/signal/ug/linear-and-circular-convolution.html

Periodic Convolution

Suppose that and that $f(x), g(x)$ are continuous (2π) - periodic functions. Their periodic convolution is $h(x)=(f * g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y$.

The Fourier series for $h(x)$ is $h_{n}=f_{n} g_{n}$. Proof (Exercise).

Thus, if you had a fast algorithm to compute f_{n}, g_{n} from $f(x), g(x)$ and a fast algorithm to compute $h(x)$ from $h_{n}=f_{n} g_{n}$, you can do fast periodic convolution.

The Discrete Fourier transform (DFT)

$$
f\left(x_{j}\right)=\sum_{n=-N / 2}^{N / 2-1} \hat{f}_{n} e^{i n x_{j}}=\sum_{n=-N / 2}^{N / 2-1} \hat{f}_{n} e^{2 \pi i n j / N} \quad \text { for } j=0, \ldots, N-1
$$

"Fourier synthesis"

Re-indexing: Note that $e^{2 \pi i n j / N}=e^{2 \pi i j} e^{2 \pi i n j / N}=e^{2 \pi i(n+N) j / N}$
So, we can identify: $\left\{\hat{f}_{-4}, \hat{f}_{-3}, \hat{f}_{-2}, \hat{f}_{-1}, \hat{f}_{0}, \hat{f}_{1}, \hat{f}_{2}, \hat{f}_{3}\right\}$ with $\left\{\hat{f}_{0}, \hat{f}_{1}, \hat{f}_{2}, \hat{f}_{3}, \hat{f}_{4}, \hat{f}_{5}, \hat{f}_{6}, \hat{f}_{7}\right\}$

Standard form for DFT: $f_{j}=\sum_{n=0}^{N-1} F_{n} e^{i n x_{j}}=\sum_{n=0}^{N-1} F_{n} e^{2 \pi i n j / N} \quad$ for $j=0, \ldots, N-1$

The Fast Fourier transform (FFT)

Standard form for DFT: $f_{j}==\sum_{n=0}^{N-1} F_{n} e^{2 \pi i n j / N} \quad$ for $j=0, \ldots, N-1 \quad N^{2}$ ops

Suppose $N=2^{K}$. Then $f_{j}=\sum_{n=0}^{N-1} F_{n} e^{2 \pi i n j / N}=\sum_{n=0}^{N / 2-1} F_{2 n} e^{2 \pi i n j /(N / 2)}+e^{2 \pi i j / N} \sum_{n=0}^{N / 2-1} F_{2 n+1} e^{2 \pi i n j /(N / 2)} \quad\left(N^{2} / 2\right)+N$ ops

DFT of size $N / 2$ on even terms $F_{2 n}$

DFT of size $N / 2$ on odd terms $F_{2 n+1}$

Continuing this recursion for $\log _{2} N$ levels yields an $O\left(N \log _{2} N\right)$ algorithm.

Standard form for normalized adjoint DFT: $\quad F_{n}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{i n x_{j}}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{2 \pi i n j / N} \quad$ for $n=0, \ldots, N-1$

Periodicity in Higher Dimensions

$f_{n, m} \approx \hat{f}_{n, m}=\left(\frac{1}{2 \pi}\right)^{2} \sum_{j=0}^{N_{x}-1} \sum_{k=0}^{N_{y}-1} f\left(x_{j}, y_{k}\right) e^{-i\left(n x_{j}+m y_{k}\right)} h^{2}=\frac{1}{N_{x} N_{y}} \sum_{j=0}^{N_{x}-1} \sum_{k=0}^{N_{y}-1} f\left(x_{j}, y_{k}\right) e^{-2 \pi i n j} e^{-2 \pi i m k}$

$$
=\frac{1}{N_{x}} \sum_{j=0}^{N_{x}-1} e^{-2 \pi i n j}\left[\frac{1}{N_{y}} \sum_{k=0}^{N_{y}-1} f\left(x_{j}, y_{k}\right) e^{-2 \pi i m k}\right]
$$

For nonperiodic functions, Fourier series are no longer applicable and we will need to make use of the Fourier transform:

$$
\hat{f}(s)=\mathscr{F}[f](s)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i s x} d x \quad f(x)=\mathscr{F}^{-1}[\hat{f}](x)=\int_{-\infty}^{\infty} \hat{f}(s) e^{2 \pi i s x} d s
$$

Frequency domain
As with complex Fourier series, there are many symmetries possible:: e.g. if $f(x)$ is real, then $\hat{f}(s)=\hat{f}(-s)^{*}$. If $f(x)$ is even or odd, so is $\hat{f}(s)$.

$$
\mathscr{F}\left[f^{(K)}\right](s)=(2 \pi i s)^{K} \hat{f}(s)
$$

Convolution theorem: If $h(x)=\left(f^{*} g\right)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y$, then $\hat{h}(s)=\hat{f}(s) \cdot \hat{g}(s)$

Summary 1

Periodic functions are naturally represented in terms of trigonometric functions (or complex exponentials). This permits easy differentiation, integration and interpolation and filtering.

The convergence rate is determined by the smoothness of the function (including its periodic extension). If $f(x) \in C^{\infty}$ (or analytic), the convergence rate is spectral or superalgebraic.

If $f(x) \in C^{K}$, then the truncated Fourier approximation converges at a rate of the order $o\left(\frac{1}{N^{K}}\right)$.
Once $f(x)$ is continuously differentiable, the convergence is uniform.
If $f(x)$ is discontinuous, but piecewise smooth, the Fourier series converses in L_{2} but not uniformly (Gibbs phenomenon). Much of modern analysis grew out of understanding this convergence theory.

- Carleson's Theorem (1966!): The Fourier expansion of any function in L^{2} converges almost everywhere
- Kahane, Katznelson (1965): For any given set E of measure zero, there exists a continuous function f such that the Fourier series of f fails to converge on any point of E.

In numerical analysis, these considerations are secondary. What we require is tools that:
(a) identify the structure of the solution, (b) monitor the convergence process, (c) estimate the error and (d) compute the solution quickly and without user intervention.

Smooth functions on an interval

Without periodicity, smooth functions are naturally (and historically) represented in a polynomial (or piecewise polynomial) basis. This topic was covered in Numerical Methods 1 (also, Appendix B in LeVeque's text).

If $w(x)$ is a weight function on an interval $[a, b]$ (positive, integrable, etc.), it induces an inner product:
$(f, g)=\int_{a}^{b} f(x) g(x) w(x) d x$
and a sequence of orthogonal polynomials $\mathscr{P}_{0}, \mathscr{P}_{1}, \ldots, \mathscr{P}_{n}, \ldots$ of increasing degree with $\left(\mathscr{P}_{n}, \mathscr{P}_{m}\right)=0$ for $m \neq n$.

In this class, we will care most about Chebyshev and Legendre polynomials:

Legendre: $\quad[a, b]=[-1,1]$ and $w(x)=1$.

$$
\begin{aligned}
& (n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x) \\
& P_{0}=1, P_{1}=x, P_{2}=\frac{3}{2} x^{2}-\frac{1}{2}, P_{3}=\frac{5}{2} x^{3}-\frac{3}{2} x, \ldots
\end{aligned}
$$

Chebyshev: $\quad[a, b]=[-1,1]$ and $w(x)=1 / \sqrt{1-x^{2}}$.

$$
\begin{aligned}
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \\
& T_{0}=1, T_{1}=x, T_{2}=2 x^{2}-1, T_{3}=4 x^{3}-3 x, \ldots \\
& T_{m}(\cos \theta)=\cos (m \theta)
\end{aligned}
$$

Smooth functions on an interval

Why are the Legendre and Chebyshev bases good for smooth functions?

Suppose we let $f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)$ or $f(x)=\sum_{n=0}^{\infty} c_{n} T_{n}(x)$ on the interval $[-1,1]$ and that $f(x) \in C^{K}$.

Then $a_{n}, c_{n}=O\left(\frac{1}{n^{K}}\right)$-just like for the Fourier series approximation of a smooth periodic function.
And the aproximation error is $O\left(\frac{1}{n^{K-1}}\right)$ or better. [Homework 1].
And again: If $f(x) \in C^{\infty}$ (or analytic), the convergence rate is spectral or superalgebraic.

Approximation/interpolation
Differentiation:

Integration:

1. Need to sample $f(x)$

Solving initial-boundary value problems
Filtering

Clenshaw-Curtis Quadrature

Recall that the trapezoidal rule with N points integrates $2 \mathrm{~N}-1$ trigonometric functions exactly.
Using a Chebyshev basis $f(x)=\frac{1}{2} c_{0} T_{0}(x)+c_{1} T_{1}(x)+\ldots+c_{n} T_{n}(x)+\ldots$ and the inner product
$(f, g)=\int_{-1}^{1} f(x) g(x)\left(1-x^{2}\right)^{-1 / 2} d x$,
we have $c_{k}=\frac{2}{\pi} \int_{-1}^{1} f(x) T_{k}(x)\left(1-x^{2}\right)^{-1 / 2} d x=\frac{2}{\pi} \int_{0}^{\pi} f(\cos \theta) \cos (k \theta) d \theta$.
Let's put an equispace grid on the latter interval $[0, \pi]: \theta_{n}=n \pi / N$ for $n=0, \ldots, N$. Let's try:

$$
c_{k} \approx \frac{2}{N}\left(\frac{f(1)}{2}+\frac{f(-1)}{2}(-1)^{k}+\sum_{n=1}^{N-1} f\left(\cos \theta_{n}\right) \cos (n k \pi / N)\right)
$$

This is a spectrally accurate quadrature scheme (Why?) and can be computed using the FFT.
One can also use the "classical" Chebyshev nodes: $\theta_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{N}$ for $n=0, \ldots, N-1$.

Gaussian Quadrature

Using a Legendre basis $f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)$ it can be shown that. $\left(P_{n}, P_{m}\right)=\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m}$.
We have $a_{k}=\frac{2 k+1}{2} \int_{-1}^{1} f(x) P_{k}(x) d x$
We'd like a spectrally accurate quadrature scheme for this but have no recourse to periodic tricks.
Thus, we want a rule of the form: $\int_{-1}^{1} f(x) d x=\sum_{n=1}^{N} w_{n} f\left(x_{n}\right)$ to be exact for polynomials of degree up to
2N-1.Gauss showed that this can be accomplished by choosing x_{n} as the roots of $P_{N}(x)$ and the weights

$$
w_{n}=\frac{2}{\left(1-x_{n}^{2}\right)\left[P_{N}^{\prime}\left(x_{n}\right)\right]^{2}}, \quad E_{n}=\frac{(b-a)^{2 n+1}(n!)^{4}}{(2 n+1)[(2 n!)]^{3}} f^{(2 n)}(\xi)
$$

GOOD NEWS: There are recent fast algorithms for computing $\left\{x_{n}, w_{n}\right\}$ in linear time.
BAD NEWS: A fast transform for $a_{k}=\frac{2 k+1}{2} \sum_{n=1}^{N} f\left(x_{n}\right) P_{k}\left(x_{n}\right) w_{n}$ is more involved than the FFT or FCT.
What are possible reasons for wanting to use the Legendre basis instead of the Chebyshev basis?

Adaptive Quadrature

-> SKETCH

Adaptive quadrature

Boundary Value Problems

Periodic boundary value problems: Constant coefficient vs variable coefficient problems.

Spectral vs pseudospectral methods. Setting up the linear system.

