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1 Overview

This document is a discription for numerical solvers for 1D advection equation

st + [u(x)f(s)]x = 0,

where u is a spatially dependent velocity. We discuss a conservative solver with finite volume method, which
requires accurate estimation for flux. To get higher order estimations for flux as an average over time and space,
we consider the advection for linear/quadratic polynomials as approximations for s in each cell.

The temporal integrator is described in section 2, and in section 3 linear and quadratic reconstructions are dis-
cussed, which should have second/third order for constant advection, and second order for non-constant advection.
These two sections follow from the 2D BDS (Bell-Dawson-Shubin) paper [1]. To tackle the case with nonsmooth
solution and reduce the oscillations introduced by numerical, in section 4 some limiters are discussed: van Leer and
BDS limiter for linear profile [1]; For quadratic reconstruction, we introduce: monotone limiting on BDS limiter
[1], and the original Piecewise Parabolic Method (PPM) [2], and extreme-preserving PPM [3].

We have some numerical results after implementing these methods with periodic boundary condition. In section
5, we consider the equation with constant advection. Results for advecting a sharp Gaussian peak, a semi-circle,
and a square wave function will be shown and analysed quantitively by L1 relative error, estimated convergence
rate and extremum values. In section 6, for non-constant advection problem, the convergence rate is verified by
method of manufactured solution.

2 Temporal integrator

2.1 Constant advection

Spatially update with finite di↵erence gives:

sn+1
j = snj � u

�t

�x
[sn+1/2

j+1/2 � sn+1/2
j�1/2 ],

where the notation sn+1
j is the averaged of j-th cell, after (n+1) time steps. Without loss of generality, assume

the flow is moving from the left to the right (u > 0), then the flux is averaged in the left cell over one time step:

sn+1/2
j+1/2 =

1

u�t

Z xj+1/2

xj+1/2�u�t

⇥
sxx,j(x� xj)

2 + sx,j(x� xj) + sj
⇤
dx,

where the quadratic function in the integral is the reconstructed quadratic approximation in the j-th cell. It
reduces to linear reconstruction when sxx,j is set to 0.

If u < 0, we will take the integral over xj+1/2 to xj+1/2 � u�t, which is the flux coming for the cell at right
side. For a fixed CFL number � = u�t/�x, this estimation is third order accurate with quadratic reconstruction
and second order with linear reconstruction.
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2.2 Spatially dependent advection

With spatially-dependent advection, the conservation law gives:

sn+1
j = snj � �t

�x
[uj+1/2s

n+1/2
j+1/2 � uj�1/2s

n+1/2
j�1/2 ].

We can rewrite the equation as:

st + usx + sux = 0,

so the influence of second term in the average flux has to be considered. First, consider u as a constant, and do
the same thing as in constant advection problems, denote a predictor step as

(sn+1/2
j+1/2 )

p =
1

uj+1/2�t

Z xj+1/2

xj+1/2�uj+1/2�t

⇥
sxx,j(x� xj)

2 + sx,j(x� xj) + s̄j
⇤
dx,

The exact formula for this integral gives

(sn+1/2
j+1/2 )

p = s̄j +
�x� uj+1/2�t

2
sx,j + sxx,j


1

4
(�x)2 � 1

2
�xuj+1/2�t+

1

3
(uj+1/2�t)2

�
.

then consider ux as a constant approximated by finite di↵erence from the upwinding direction, and take the
average over time (therefore with coe�cient of �t/2) gives:

sn+1/2
j+1/2 = (sn+1/2

j+1/2 )
p � �t

2

(uj+1/2 � uj�1/2)

�x
(sn+1/2

j+1/2 )
p.

With a spatially dependent u, this estimation is second order accurate for linear/quadratic construction.

3 Piecewise reconstruction

3.1 Linear reconstruction

First, we construct a linear representation of s at time tn in the form of

plj(x) = sx,j(x� xj) + ŝ,

where xj denotes the cell center of cell j. And the estimates for the edges of cell is given by

sj+1/2 =
1

12
[7(sj + sj+1)� (sj+2 + sj�1)] , (1)

which is third order accurate for smooth functions, proposed in [2] by constructing a parabola on [xj�1, xj+1]
and calculate the mean of slope in the interval.

Then, the parameter for linear term in the reconstruction is given by centered finite di↵erence between the two
corners:

sx,j =
sj+1/2 � sj�1/2

�x
=

�sj+2 + 8sj+1 � 8sj�1 + sj�2

12�x
. (2)

3.2 Quadratic reconstruction

Here we construct a new quadratic representation of s at time tn in the form of

pqj(x) = sxx,i(x� xj)
2 + sx,j(x� xj) + s̄,

where xj denotes the cell center of cell j, and we no longer use the notation ŝ, as the constant term will no
longer be equal to sj . The first order coe�cient is same as linear reconstruction. As proposed in [1], eq 25a, the
coe�cient for quadratic term is given by half of the second order derivative at cell center i, approximately:

sxx,j =
1

2

(�sj�2 + 12sj�1 � 22sj + 12sj+1 � sj+2)

8(�x)2
,
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which is exact for polynomials up to order 5, and the coe�cient for second order term is hence given by the
derivatives by 2, and the constant s̄ could be calculated by matching the average over cell j:

s̄ = sj �
1

�x

Z xj+1/2

xj�1/2

sxx,j(x� xj)
2dx = sj �

1

12
sxx,j(�x)2.

4 Limiters

The purpose of limiting process is to guaratee that the numerical method does not introduce new extrema at the
edges and cause large amplitude oscillations near non-smoothness. Here we introduce some limiters on linear and
quadratic terms.

4.1 Limiters for linear reconstruction

4.1.1 van Leer limiter

The idea of van Leer limiter is that, the absolute value of the coe�cient can not exceed twice the value for the finite
di↵erence evaluated at left/right side only. In this report, as our linear coe�cient is given by

sx,j =
1

12�x
[�sj+2 + 8sj+1 � 8sj�1 + sj�2]

For example, if the derivative for both sides are positive, then:

slx,j = min

⇢
�sj+2 + 8sj+1 � 8sj�1 + sj�2

12�x
,
�sj+2 + 8sj+1 � 7sj

6�x
,
�8sj�1 + sj�2 + 7sj

6�x

�
. (3)

If the finite di↵erences have di↵erent signs, then assign it to zero.

4.1.2 BDS limiter

Here we use the BDS limiter as mentioned in [1] for the 1D case, which says that if a local extreme happens, the
slope should be adjusted such that the L1 norm between it and the original interpolation is minimized, subject to
the constraint that the interpolated face values lie in the rage of adjacent cell averages, and the averaged value in
the cell is equal to the original one:

min
slx,i

|slx,i � sx,i|, s.t.si � slx,i
�x

2
2 [min(si�1, si),max(si�1, si)], si + slx,i

�x

2
2 [min(si+1, si),max(si+1, si)].

In the code, this is done in an iterative way, which is:

• For each cell, calculate the number of face values that fall outside of the range of adjacent cells, i.e.

si � slx,i
�x

2
/2 [min(si�1, si),max(si�1, si)], si + slx,i

�x

2
/2 [min(si+1, si),max(si+1, si)].

This number can only be equal to 0 or 1 or 2.

• If the value is equal to 1, then just adjust that value such that the change in the absolute value of slope is
minimized. For example, if si � sx,i�x/2 < min(si�1, si), and the unlimited slope is positive, then we just
adjust the slope such that si � sx,i�x/2 = min(si�1, si).

• If the value is equal to 2, we adjust the slope with the same principle of minimizing L1 norm. How to adjust
the slope depends on which face value is farther from the constraint range. For example:

If |si + sx,i�x/2 �max(si+1, si)| > |si � sx,i�x/2 �min(si�1, si)|, then we have to adjust according to the
constraint on the right side, otherwise it is not enough to let the interpolation on the other side also satisfy
the constraint.
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4.2 Limiters for quadratic reconstruction

4.2.1 Monotone limiting

This limiter is also discussed in [1]: to guarantee the monotonicity, we do the limiting by constrain that the extrema
of quadratic polynomial does not occur in the cell:

(pqi )x = 2sxx,i(x� xi) + sx,i 6= 0 8x 2 [xi�1/2, xi+1/2] =) |sxx,i| 
|sx,i|
�x

.

Therefore, it gives that if |sxx,i| > |sx,i|
�x , then set sxx,i = sgn(sxx,i)

|sx,i|
�x . In the code, it is implemented in the

way that: we start from the unlimited linear interpolation and apply this quadratic constraint, if new extreme is
created, then start from the limited linear interpolation and constrain the quadratic terms again. If it still creates
new extreme, then set it to piecewise constant.

4.2.2 PPM limiter (with extremum preservation)

This limiter is designed for preserving smooth extreme values, as the monotone one overshoot sometimes, because
it is more restrictive than monotonicity preserving. In [3], the authors proposed another PPM limiter.

1. Interpolating face values: As discussed in the previous section, the interpolation of face values gives

sj+1/2 =
1

12
[7(sj + sj+1)� (sj+2 + sj�1)] ,

we first constrain it by van Leer limiter as mentioned in [3], then limit this value by using a nonlinear
combination of approximations to the second derivative. If it falls outside of the constraint range, then we
impose the following constraint:

(D2s)j+1/2 =
3

h2
(sj � 2sj+1/2 + sj+1)

(D2s)j+1/2,L =
1

h2
(sj�1 � 2sj + sj+1)

(D2s)j+1/2,R =
1

h2
(sj � 2sj+1 + sj+2)

If the signs of them are all the same, we define

(D2s)lj+1/2 = sgn((D2s)j+1/2)min(C|(D2s)j+1/2,L|, C|(D2s)j+1/2,R|, |(D2s)j+1/2|).

Here C > 1 is a constant independent on the discretization grid size. In [3], the authors mentioned that
numerical experiments have shown that the solution is not sensitive to the value C in the range of [1.25, 5]. If
the signs are not the same, then limit it to zero.

So,
sj+1/2 = (sj + sj+1)/2� h2(D2s)lj+1/2/8.

In [3], the denominator is 3, which I think is a typo...? As this formula is exact for quadratic polynomials
with denominator 8.

2. Constructing the parabolic interpolant

First, set sj,+ = sj+1/2, and sj,� = sj�1/2.

(a) Case when extremum occurs:

If
(sj,+ � sj)(sj,� � sj) � 0 or(sj+1 � sj)(sj�1 � sj) � 0,

then it is a local extremum, then we approximate the second order derivative as
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(D2s)j =
�2

h2
(6sj � 3(sj,+ + sj,�))

(D2s)j,C =
1

h2
(sj�1 � 2sj + sj+1)

(D2s)j,L =
1

h2
(sj�2 � 2sj�1 + sj)

(D2s)j,R =
1

h2
(sj � 2sj+1 + sj+2)

Again, if their signs are all the same, then

(D2s)lj = sgn((D2s)j+1/2)min(C|(D2s)j,L|, C|(D2s)j,R|, C|(D2s)j,C |, |(D2s)j |).

Then we can use it as quadratic coe�cient after dividing it by 2.

If (2a) does not hold, then proceed to the original PPM limiter, which is:

(b) If (sj,+ � sj)(sj,� � sj) > 0 and (2a) does not hold, then set it piecewisely constant: sj,+ = sj,� = sj .

(c) Otherwise, if one of |sj,± � sj | � 2|sj,⌥ � sj |, then for that choice of ± we set

sj,± = sj � 2(sj,⌥ � sj).

The second and third items are the original PPM method [2], and the full extremum-preserving PPM will be
refered as PPM2 later. To make the parameterization consistent with BDS, we make the translation between
sj,± and sxx,j , sx,j and s0,j , which is exact for quadratic polynomials:

sxx,j =
3(sj,+ � sj,�)� 6sj

(�x)2
, sx,j =

sj,+ � sj,�
�x

, s0,j = sj �
sxx,j
12

(�x)2.

Theoretically, the BDS limiter is providing a hard constraint on the interpolated face values, while the van
Leer limiter, of PPM limiters only constrain (in a soft way, for example, by a loose bound with constant C in
PPM ) on the amplitude of derivative. So one could expect that BDS will overshoot more than van Leer in linear
interpolation. For quadratic reconstruction, the extremum-preserving PPM breaks the monotonicity constraint,
which is too strong and often not necessary, so it overshoots the least. This agrees with numerical experiments
with constant advection in this report, and also with the experiments in BDS paper [1] in 2D cases and spatially
dependent advection problems. However, it has its advantage for more di�cult problems when PPM/PPM2 ( Table
13 in [1] ) and van Leer ( see the square wave case with large CFL in this report ) could fail.

5 Numerical examples with constant advection

We test the algorithm for a system with over an interval [0, 1] with N = 32, 64, 128, 256, 512 equi-spaced points and
periodic boundary condition. The initial conditions are given by:

• Gaussian: s(x, 0) = exp(�256(x� 1
2 )

2)–smooth.

• Semi-circle: s(x, 0) =
�
max

�
1
16 � (x� 1

2 )
2
�
, 0
� 1

2 –continuous but non-smooth.

• Square wave: s(x, 0) = X|x� 1
2 |

1
4
–discontinuous.

The advection equation is given with a constant coe�cient:

st(x, t) + usx(x, t) = 0, x 2 [0, 1], s(0, t) = s(1, t),

where u = 1, so we can have the analytical solution sexact(x, t) = s(mod(x� t, 1), 0). The errors are quantified
by the relative norm at time t = 10:

✏h(t) =
||sh � s̄exact||1

||s̄exact||1
,
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where the s̄exact is the cell-average of analytical solution.
We will estimate the convergence rate empirically with the following formula:

ratio(h) = log(
✏2h
✏h

)/ log(2).

The methods we will be testing is:

• Linear reconstruction: no limiting/van Leer limiter/BDS limiter [1] ;

• Quadratic reconstruction: no limiting/BDS+monotone limiter [1] /PPM [2] /PPM2(extremum-preserving)
[3]. The constant in constraint is chosen as the same value in [2]: C = 1.25.

For a comparison, with same initial condition/advection, this ratio for these problems in [3] with PPM is
respectively approaching 3 for Gaussian problem, 1.2 for semi-circle and 0.8 for square wave problem, comparable
with the results below.

When initializing the numerical solver, we set the initial value to be a 4-th order approximation of average over
each cell, as mentioned in [3]:

s0j = s(j�x, 0) +
1

24
(s((j � 1)�x, 0)� 2s(j�x, 0) + s((j + 1)�x, 0)),

so it does not influence the result of empirical order estimation, as theoretically all of these methods are sec-
ond/third order accurate for smooth problems .

5.1 Gaussian initial condition

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
error 1.2948 0.8763 0.3759 0.1045 0.0266
ratio – 0.5633 1.2209 1.8464 1.9734

linear, VL
error 0.7656 0.3998 0.1766 0.0897 0.0302
ratio – 0.9373 1.1790 0.9774 1.5698

linear, BDS
error 0.8758 0.4785 0.1991 0.0969 0.0306
ratio – 0.8720 1.2647 1.0392 1.6625

quadratic, unlimit
error 0.5518 0.1670 0.0224 0.0025 0.0003
ratio – 1.7247 2.9006 3.1652 3.0686

quadratic, BDS+monotone
error 0.8448 0.3896 0.1321 0.0328 0.0076
ratio – 1.1166 1.5605 2.0116 2.1140

quadratic, PPM
error 0.6278 0.2221 0.0655 0.0106 0.0019
ratio – 1.4988 1.7616 2.6322 2.4736

quadratic, PPM2
error 0.5591 0.1637 0.0344 0.0038 0.0005
ratio – 1.7722 2.2523 3.1897 2.8279

Table 1: Relative L1 error and empirical order at t = 10 with CFL 0.2 for constant advection and Gaussian peak
initial condition with di↵erent reconstruction.

• This is a smooth problem, and the relative L1 error and its ratio (unlimited) indicates second order for linear
reconstruction, third order for quadratic reconstruction as expected.

• In this case, the limiter only overshoots, so the linear reconstruction reduces to a combination of piecewise
constant/linear, hence has a ratio between 1 and 2 with limiter. In the same sense, with limiting, quadratic
reconstruction should have a ratio between 2 and 3 theoretically, and it is consistent with numerical experiment.

The maximum of numerical solution occurs at the peak, and it tells us how much the flux limiter is overshooting
by how far it is from 1. From the figure of solutions (peak) and table for maximum, in linear reconstruction, BDS
limiter overshoots more than van Leer limiter. In quadratic reconstruction, the extremum-preserving PPM performs
very well, less overshoots than the original PPM. PPM is better than BDS with monotone limiting on its quadratic
term.
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Figure 1: With linear/quadratic reconstruction, relative L1 error for Gaussian peak constant advection with CFL
0.2 at t = 10 as a function of number of cells, plot in logarithm scale.
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Figure 2: Numerical solution (blue) vs truth solution (red) for advection of Gaussian peak with N = 256 at t = 10.

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit 0.4946 0.7012 0.8908 0.9806 0.9979
linear, VL 0.4461 0.6644 0.8610 0.9503 0.9791
linear, BDS 0.3610 0.5666 0.7778 0.9015 0.9580

quadratic, unlimit 0.6285 0.8599 0.9730 0.9961 0.9994
quadratic, BDS+monotone 0.3740 0.6132 0.8207 0.9276 0.9732

quadratic, PPM 0.4935 0.7610 0.9079 0.9710 0.9913
quadratic,PPM2 0.5379 0.8278 0.9582 0.9913 0.9978

Table 2: Maximum at t = 10 with CFL 0.2 for constant advection and Gaussian peak initial condition with di↵erent
reconstruction. Theoretically, its value should be equal to 1.
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5.2 Semi-circle initial condition

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
error 0.2687 0.1584 0.0886 0.0476 0.0252
ratio – 0.7625 0.8383 0.8956 0.9181

linear, VL
error 0.1601 0.0925 0.0537 0.0313 0.0165
ratio – 0.7913 0.7844 0.7786 0.9251

linear, BDS
error 0.1578 0.0933 0.0546 0.0322 0.0172
ratio – 0.7582 0.7733 0.7606 0.9026

quadratic, unlimit
error 0.0944 0.0447 0.0201 0.0089 0.0040
ratio – 1.0779 1.1555 1.1690 1.1606

quadratic, BDS+monotone
error 0.0920 0.0539 0.0230 0.0100 0.0044
ratio – 0.7716 1.2264 1.1974 1.1750

quadratic, PPM
error 0.0817 0.0493 0.0227 0.0105 0.0049
ratio – 0.7295 1.1195 1.1074 1.0985

quadratic, PPM2
error 0.0820 0.0492 0.0227 0.0105 0.0049
ratio – 0.7364 1.1174 1.1175 1.0943

Table 3: Relative L1 error and empirical order at t = 10 with CFL 0.2 for constant advection and semi-circle initial
condition with di↵erent reconstruction.
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Figure 3: Relative L1 error for semi-circle constant advection with CFL 0.2 at t = 10 as a function of number of
cells, plot in logarithm scale.

The ratio of error is slightly less than 1 for linear reconstruction, and slightly more than 1 for quadratic
reconstruction. The solution is continuous, but has discontinuous first order derivative at two points, so both
reconstruction will behave like around first order accurate, as the first order derivative can not be estimated well
only by finite di↵erence between adjacent cells. However, it can do well for linear/quadratic estimation when it is far
from the two discontinuities, so it makes sense to have an accuracy order above one with quadratic reconstruction.

In this problem, there is a smooth maximum, and are infinitely many minimums. With no limiter, both linear
and quadratic reconstruction has oscillations, as its max/min has larger absolute value than truth. All of the
limiters succeed to keep the values in the possible range. Basically, the conclusion is same as Gaussian test: BDS
overshoots more than van Leer and PPMs, at both the smooth maximum and the minimums its values are farther
from the truth.
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Figure 4: Numerical solution for semi-circle constant advection with CFL 0.2, N = 256 at t = 10.

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
max 0.2698 0.2649 0.2541 0.2498 0.2500
min -0.0351 -0.0315 -0.0264 -0.0220 -0.0180

linear, VL
max 0.2431 0.2433 0.2483 0.2494 0.2499
min 0.0010 0.0000 0.0000 0.0000 0.0000

linear, BDS
max 0.2309 0.2427 0.2477 0.2492 0.2497
min 0.0032 0.0001 0.0000 0.0000 0.0000

quadratic, unlimit
max 0.2540 0.2502 0.2500 0.2500 0.2500
min -0.0105 -0.0085 -0.0063 -0.0047 -0.0035

quadratic, BDS+monotone
max 0.2338 0.2449 0.2483 0.2494 0.2498
min 0.0023 0.0000 0.0000 0.0000 0.0000

quadratic, PPM
max 0.2409 0.2476 0.2494 0.2498 0.2499
min 0.0004 0.0000 0.0000 0.0000 0.0000

quadratic, PPM2
max 0.2409 0.2482 0.2494 0.2500 0.2500
min 0.0002 0.0000 0.0000 0.0000 0.0000

Table 4: Maximum/minimum at t = 10 with CFL 0.2 for constant advection and semi-circle initial condition with
di↵erent reconstruction. The maximum of analytical solution is 0.25, and minimum is 0.
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5.3 Square wave initial condition

Small CFL number: 0.2

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
error 0.4237 0.2899 0.2019 0.1355 0.0902
ratio – 0.5473 0.5221 0.5749 0.5870

linear, VL
error 0.2489 0.1597 0.1021 0.0652 0.0415
ratio – 0.6405 0.6443 0.6486 0.6515

linear, BDS
error 0.2535 0.1635 0.1052 0.0676 0.0434
ratio – 0.6332 0.6361 0.6383 0.6384

quadratic, unlimit
error 0.1925 0.1203 0.0703 0.0406 0.0235
ratio – 0.6779 0.7750 0.7931 0.7906

quadratic, BDS monotone
error 0.1887 0.1110 0.0652 0.0384 0.0227
ratio – 0.7649 0.7679 0.7632 0.7604

quadratic, PPM
error 0.1775 0.1043 0.0618 0.0373 0.0233
ratio – 0.7679 0.7542 0.7275 0.6772

quadratic, PPM2
error 0.1775 0.1043 0.0618 0.0373 0.0233
ratio – 0.7667 0.7557 0.7275 0.6768

Table 5: Relative L1 error and empirical order at t = 10 with CFL 0.2 for constant advection and Gaussian peak
initial condition with di↵erent reconstruction.
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Figure 5: Relative L1 error for square wave constant advection with CFL 0.2 at t = 10 as a function of number of
cells, plot in logarithm scale.

This test problem has two discontinuities, and each point is either a global maximum or global minimum. This
is more di�cult than the semi-circle one, as there is discontinuities in itself (which can not be resolved well because
finite di↵erence in interpolation introduce some numerical ’correlation’ between adjacent cells in this case), so the
accuracy order will be lower for both linear and quadratic reconstructions.

In this case, when the resolution is high enough, with all of the limiters the maximum and minimum are very
accurate, while there can be large oscillations near discontinuities with no limiter (see the figure of solutions). Still,
BDS overshoots more, underestimates maximum and overestimates minimum, and PPM2 does slightly better than
PPM (which is not obvious from figures, but from max/min values and L1 error).

This numerical test is done with small CFL number 0.2, which is not good for this discontinuous problem, as
the more time steps it takes, the more ’correlation’ there will be between adjacent cells, so we see that a lot of
points are needed to resolve the discontinuities. In the following, results on the same problem, but with CFL 0.9
will be considered, and it provideds important conclusions.
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Figure 6: Numerical solution for square wave constant advection with CFL 0.2, N = 256 at t = 10.

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
max 1.2069 1.2201 1.2297 1.2399 1.2471
min 0.9887 0.9998 1.0000 1.0000 1.0000

linear, VL
max 0.9887 0.9998 1.0000 1.0000 1.0000
min 0.0113 0.0002 0.0000 0.0000 0.0000

linear, BDS
max 0.9769 0.9990 1.0000 1.0000 1.0000
min 0.0231 0.0010 0.0000 0.0000 0.0000

quadratic, unlimit
max 1.0698 1.0719 1.0692 1.0672 1.0656
min -0.0698 -0.0719 -0.0692 -0.0672 -0.0656

quadratic, BDS+monotone
max 0.9784 0.9993 1.0000 1.0000 1.0000
min 0.0216 0.0007 0.0000 0.0000 0.0000

quadratic, PPM
max 0.9951 1.0000 1.0000 1.0000 1.0000
min 0.0049 0.0000 0.0000 0.0000 0.0000

quadratic, PPM2
max 0.9962 1.0000 1.0000 1.0000 1.0000
min 0.0038 0.0000 0.0000 0.0000 0.0000

Table 6: Maximum/minimum at t = 10 with CFL 0.2 for constant advection and square wave initial condition with
di↵erent reconstruction.
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Large CFL number: 0.9

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
error 0.1943 0.1407 0.0965 0.0655 0.0423
ratio – 0.4665 0.5441 0.5577 0.6300

linear, VL
error 0.1305 0.0856 0.0565 0.0386 0.0252
ratio – 0.6094 0.5977 0.5490 0.6187

linear, BDS
error 0.1322 0.0849 0.0549 0.0359 0.0221
ratio – 0.6391 0.6279 0.6142 0.7022

quadratic, unlimit
error 0.1424 0.0788 0.0455 0.0258 0.0148
ratio – 0.8531 0.7943 0.8156 0.8068

quadratic, BDS+monotone
error 0.1261 0.0694 0.0405 0.0240 0.0138
ratio – 0.8622 0.7749 0.7554 0.7989

quadratic, PPM
error 0.1229 0.0666 0.0388 0.0230 0.0133
ratio – 0.8852 0.7781 0.7560 0.7842

quadratic, PPM2
error 0.1229 0.0666 0.0388 0.0230 0.0133
ratio – 0.8849 0.7781 0.7560 0.7842

Table 7: Relative L1 error and empirical order at t = 10 with CFL 0.9 for constant advection and Gaussian peak
initial condition with di↵erent reconstruction.
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Figure 7: Relative L1 error for square wave constant advection with CFL 0.9 at t = 10 as a function of number of
cells, plot in logarithm scale.

As mentioned in the results with CFL number equal to 0.2, with a larger CFL number, the L1 error is reduced
because less cells are needed to resolve the discontinuities, even for the unlimited methods. And a new observation
is that, in this case, the van Leer limiter is not enough for limiting, as oscillations are still seen in solutions near
discontinuities. Although BDS overshoots, it always succeed to keep extemum values in the possible range, which
might be important for more complicated problems, as in the 2D cases when initial data is discontinuous, and
velocity spacially dependent (Table 13, [1], where PPM/PPM2 are insu�cient in limiting).
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Figure 8: Numerical solution for square wave constant advection with CFL 0.9, N = 256 at t = 10.

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
max 1.1400 1.1691 1.1877 1.2070 1.2228
min -0.1400 -0.1691 -0.1877 -0.2070 -0.2228

linear, VL
max 1.0085 1.0138 1.0253 1.0499 1.0778
min -0.0085 -0.0138 -0.0253 -0.0499 -0.0778

linear, BDS
max 0.9995 1.0000 1.0000 1.0000 1.0000
min 0.0005 0.0000 0.0000 0.0000 0.0000

quadratic, unlimit
max 1.0893 1.0860 1.0828 1.0785 1.0789
min -0.0893 -0.0860 -0.0828 -0.0785 -0.0789

quadratic, limited
max 0.9992 1.0000 1.0000 1.0000 1.0000
min 0.0008 0.0000 0.0000 0.0000 0.0000

quadratic, PPM
max 1.0000 1.0000 1.0000 1.0000 1.0000
min 0.0000 0.0000 0.0000 -0.0000 0.0000

quadratic, PPM2
max 1.0000 1.0000 1.0000 1.0000 1.0000
min 0.0000 0.0000 0.0000 -0.0000 0.0000

Table 8: Maximum/minimum at t = 10 with CFL 0.2 for constant advection and square wave initial condition with
di↵erent reconstruction.
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6 A numerical example with spatially-dependent advection

In this section, we examine the accuracy for spatially-dependent advection problem. As no problem with known
analytical solution is provided, here we use method of manufactured solution, with:

st(x, t) + [(sin(2⇡x) + 2)s(x, t)]x = 0, s(x, 0) = cos(2⇡x), x 2 [0, 1], s(0, t) = s(1, t).

If we prescribe the truth solution as sexact = cos(2⇡(x+ t)), the accuracy can be tested by solving the equation
with a source term:

st(x, t) + [(sin(2⇡x) + 2)s(x, t)]x = (sexact)t(x, t) + [(sin(2⇡x) + 2)sexact(x, t)]x = f(x, t).

where the function f(x, t) can be calculated explicitly as 2⇡ cos(2⇡(2x + t)) � 6⇡ sin(2⇡(x + t)). The influence
of source term in implementation is in two parts:

• In the predictor step of face values, the equation should go half of the time step with the forcing:

spi+1/2 =
1

ui+1/2�t

Z xi+1/2

xi+1/2�ui+1/2�t

⇥
sxx,i(x� xi)

2 + sx,i(x� xi) + si
⇤
dx+ fi�t/2.

• In the temporal integrator, the equation should go one full time step forward:

sn+1
j = snj � �t

�x
[uj+1/2sj+1/2 � uj�1/2sj�1/2] + fj�t.

The method is initialized analytically with cell average at time 0, and we compare the exact solution as cell
average analytically in the same way, so they are exact. The error and convergence ratio are shown in the table
below, with t = 10, and the maximum value for CFL number is maxx(u(x))�t/�x = 3�t/�x = 0.6. The table
9 and logarithm plot of relative global error 10 shows a second order convergence for both linear and quadratic
reconstruction (slightly, quadratic one is better, and limiting only does overshoot and no help in this problem), and
the local error converge to a smooth function in space (see figure 9) , which indicates it has reached its asymptotic
limit.

N = 32 N = 64 N = 128 N = 256 N = 512

linear, unlimit
error 0.0055 0.0015 0.0004 0.0001 0.0000
ratio – 1.9659 1.9881 1.9977 1.9995

linear, BDS
error 0.0056 0.0015 0.0004 0.0001 0.0000
ratio – 1.9843 1.9854 1.9960 1.9984

quadratic, unlimit
error 0.0053 0.0014 0.0003 0.0001 0.0000
ratio – 1.9622 1.9938 1.9992 1.9999

quadratic, BDS+monotone
error 0.0054 0.0014 0.0003 0.0001 0.0000
ratio – 1.9966 2.0027 1.9994 2.0002

Table 9: Relative L1 error and empirical order at t = 10 with maximal CFL 0.6 for non-constant advection with
manufactured solution and square wave initial condition.
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Figure 9: Local error for linear/quadratic reconstruction as function of space without limiting.
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Figure 10: Logarithm plot for global relative error at t = 10 as function of number of cells.
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