Spring 2021: Numerical Analysis

Assignment 3 (due Wednesday March 17th 2pm)

1. Induced matrix norms (5pts)

Let $A, B \in \mathbb{R}^{n \times n}$ and let the matrix norm $\|\cdot\|$ be induced by/subordinate of a vector norm $\|\cdot\|$.
(a) (2pts) Show that $\|A B\| \leq\|A\|\|B\|$.
(b) (1pt) For the identity matrix $I \in \mathbb{R}^{n \times n}$, show that $\|I\|=1$.
(c) (1pt) For A invertible, show that $\kappa(A) \geq 1$, where $\kappa(A)$ is the condition number of that matrix A corresponding to the norm $\|\cdot\|$. Use the above two properties with $B:=A^{-1}$ for your argument.
(d) (1pts) Argue that the Frobenius matrix norm $\|A\|_{F}:=\left(\sum_{i, j=1}^{n} a_{i j}^{2}\right)^{1 / 2}$ cannot be induced by a suitable vector norm. Hint: Use one of the points above.

2. QR factorization (3pts)

Compute by hand the QR-factorization of the matrix:

$$
\left[\begin{array}{cc}
9 & -6 \\
12 & -8 \\
0 & 20
\end{array}\right] .
$$

3. Fitting (6pts)

We believe that a real number Y is approximately determined by X with the model function

$$
Y=a \exp (X)+b X^{2}+c X+d
$$

We are given the following table of data for the values of X and $Y:{ }^{1}$

X	0.0	0.5	1.0	1.5	2.0	2.0	2.5
Y	0.0	0.20	0.27	0.30	0.32	0.35	0.27

Using the above data points, write down 7 equations in the four unknowns a, b, c, d (2pts). The least squares solution to this system is the best fit function; find this in MATLAB/python/julia and explain which method you used and report the result (2pts). Plot the data points (X, Y) as points/symbols ${ }^{2}$ and the best fit function as a smooth curve/line (2 pts).

[^0]
[^0]: ${ }^{1}$ Note that you have two measurements at the same point $X=2.0$. That is not uncommon in practice, and since measurements can contain noise it is possible that data at the same point are different.
 ${ }^{2}$ Do not connect the points; in MATLAB you can do that using plot(X, Y, 'ro').

