Spring 2021: Numerical Analysis Assignment 3 (due Wednesday March 17th 2pm)

1. Induced matrix norms (5pts)

Let $A, B \in \mathbb{R}^{n \times n}$ and let the matrix norm $\|\cdot\|$ be induced by/subordinate of a vector norm $\|\cdot\|$.

- (a) (2pts) Show that $||AB|| \le ||A|| ||B||$.
- (b) (1pt) For the identity matrix $I \in \mathbb{R}^{n \times n}$, show that ||I|| = 1.
- (c) (1pt) For A invertible, show that $\kappa(A) \ge 1$, where $\kappa(A)$ is the condition number of that matrix A corresponding to the norm $\|\cdot\|$. Use the above two properties with $B := A^{-1}$ for your argument.
- (d) (1pts) Argue that the Frobenius matrix norm $||A||_F := \left(\sum_{i,j=1}^n a_{ij}^2\right)^{1/2}$ cannot be induced by a suitable vector norm. *Hint*: Use one of the points above.

2. QR factorization (3pts)

Compute by hand the QR-factorization of the matrix:

[9]	-6
12	-8
0	20

3. Fitting (6pts)

We believe that a real number Y is approximately determined by X with the model function

$$Y = a\exp(X) + bX^2 + cX + d$$

We are given the following table of data for the values of X and Y:¹

X	0.0	0.5	1.0	1.5	2.0	2.0	2.5
Y	0.0	0.20	0.27	0.30	0.32	0.35	0.27

Using the above data points, write down 7 equations in the four unknowns a, b, c, d (2pts). The least squares solution to this system is the best fit function; find this in MATLAB/python/julia and explain which method you used and report the result (2pts). Plot the data points (X, Y) as points/symbols² and the best fit function as a smooth curve/line (2 pts).

¹Note that you have two measurements at the same point X = 2.0. That is not uncommon in practice, and since measurements can contain noise it is possible that data at the same point are different.

²Do not connect the points; in MATLAB you can do that using plot(X,Y,'ro').