
MATH-UA.0252 (Aleks Donev, NYU Courant)

Spring 2021: Numerical Analysis
Assignment 4 (due April 7th 2pm EST)

1. [Eigenvalue/vector properties, 9pts] Prove the following statements, using the basic definition of
eigenvalues and eigenvectors, or give a counterexample showing the statement is not true. Assume
A ∈ Rn×n, n ≥ 1.

(a) [1pt] If λ is an eigenvalue of A and c ∈ R, then λ + c is an eigenvalue of A + cI, where I is the
identity matrix.

(b) [1pt] If λ is an eigenvalue of A and c ∈ R, then cλ is an eigenvalue of cA.

(c) [1pt] If λ is an eigenvalue of A, then for any positive integer p, λp is an eigenvalue of Ap.

(d) [1pt] Every matrix with n ≥ 2 has at least two distinct eigenvalues.

(e) [1pts] Every real matrix has a real eigenvalue.

(f) [1pt] If A is singular, then it has an eigenvalue equal to zero.

(g) [1pt] If all the eigenvalues of a matrix A are zero, then A = 0.

(h) [2pts] If Ã is “similar” to A, which means that there is a nonsingular matrix P such that A =
PÃP−1, then if λ is an eigenvalue of A, it is also an eigenvalue of Ã. How do the eigenvectors of
Ã relate to the eigenvectors of A?

2. [Roots of polynomials, 8 pts] An efficient way to find individual roots of a polynomial is to use
Newton’s method. However, as we have seen, Newton’s method requires an initialization close to the
root one wants to find, and it can be difficult to find all roots of a polynomial. Luckily, one can use
the relation between eigenvalues and polynomial roots to find all roots of a given polynomial. Let us
consider a polynomial of degree n with leading coefficient 1:

p(x) = a0 + a1x+ . . .+ an−1x
n−1 + xn with ai ∈ R.

(a) [3pts] Show that p(x) is the characteristic polynomial of the matrix (sometimes called a companion
matrix for p)

Ap :=


0 −a0
1 −a1

. . .
...

1 −an−1

 ∈ Rn×n.

Thus, the roots of p(x) can be computed as the eigenvalues of Ap using the QR algorithm (as
implemented, e.g., in MATLAB’s eig function).

(b) [5pts] Let us consider Wilkinson’s polynomial pw(x) of order 15, i.e., a polynomial with the roots
1, 2, . . . , 15:

pw(x) = (x− 1) · (x− 2) · . . . · (x− 15).

The corresponding coefficients can be found using the poly() function. Use these coefficients in
the matrix Ap to find the original roots again, and compute their relative error. Compare with the
build-in method (called roots()) for finding the roots of a polynomial.1

1Note that for MATLAB functions that do not use external libraries, you can see how they are implemented by typing edit

name of function. Doing that for the roots function will show you that MATLAB implements root finding exactly using a
companion matrix as described above.
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3. [Power Method, 8pts]

(a) [3pts] Implement the Power Method for an arbitrary matrix A ∈ Rn×n and an initial vector x0 ∈ Rn,
and test that it works (i.e., validate it) in some way. [Hint: Try applying it to a diagonal matrix,
for example.]

(b) [5pts] Use your code to find an eigenvector of

A =

−2 1 4
1 1 1
4 1 −2

 ,
starting with x0 = (1, 2,−1)T and x0 = (1, 2, 1)T . Report the 6th iterate for each of the two initial
vectors. Then use MATLAB’s eig(A) to examine the eigenvalues and eigenvectors of A. Do the
two sequences converge to the expected eigenvector according to the theory covered in class — if
not why not?

4. [Square root of matrix, 12pts] In homework 2 you considered applying Newton’s method to compute
a matrix square root. The eigenvalue decomposition can be used to generalize scalar functions to matrix
valued functions. For this problem it is OK to assume that A is normal or that it is Hermitian/symmetric,
although some parts can be proven by only assuming A is non-defective.

(a) [1pt] Relate the eigenvalue decomposition of A−1 to that of A.

(b) [3pts] Given a square matrix A and real number t, the matrix exponential etA is defined via the
Taylor series for the exponential function:

etA = 1 + tA+
(tA)2

2!
+

(tA)3

3!
+

(tA)4

4!
+ . . . =

∞∑
k=0

(tA)k

k!
(1)

Can you relate the eigenvalue decomposition of etA (as defined above) with that of A?

(c) [4pts] The square root of a Hermitian/symmetric positive semidefinite matrix A (i.e., a matrix with
all non-negative eigenvalues) is a matrix X such that X∗X = A, where star denotes complex
conjugate transpose. If you are given the eigenvalue decomposition of A, can you find at least one
such matrix X?
Often the matrix X is restricted to be Hermitian also (i.e., X2 = A). Can you find a Hermitian
square root of A from the eigenvalue decomposition of A? Is such a square matrix unique? If not,
can you think of some way to make it unique (just like we decide

√
4 = 2 be unique instead of the

more general
√
4 = ±2)?

(d) [1pts] Using what you found above, can you think of how you may apply any scalar function f(x)
(say sine) to a symmetric matrix?

(e) [3pts] Find a symmetric square root of the matrix (explain how) using Matlab

A =


8 4 2 1
4 8 4 2
2 4 8 4
1 2 4 8

 . (2)

Do not use built-in functions for square roots of matrices (but it is OK to use them to validate
your answer).
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