
MATH-UA.0252 (Aleks Donev, NYU Courant)

Spring 2021: Numerical Analysis
Assignment 5: Polynomial interpolation/approximation

Due April 26th 2pm EST

1. [Quadratic interpolation and root finding, 8 pts] When solving an equation of the form f(x) = 0,
Newton’s method uses explicit derivative information of f to calculate the tangent line and its x-intercept
(its root). The secant method uses two points (xk−1, f(xk−1)), and (xk, f(xk)), to fit a linear function
approximating the tangent line and then finds its root.

(a) [4 pts] On the other hand, Muller’s method uses three points, (xk−2, f(xk−2)), (xk−1, f(xk−1)),
(xk, f(xk)), to fit a parabola (i.e. interpolate a parabola). It then uses the quadratic formula to
find the root of this parabola that is closest to xk. Using Lagrange interpolation, derive Muller’s
method, i.e., write as compact of a formula for how to obtain xk+1 from the previous three points
as you can.

(b) [4 pts] A core part of Matlab’s default algorithm in fsolve (called Brent’s method) is to use inverse
quadratic interpolation approach, which flips the role of x and y. The idea is to interpolate
a quadratic polynomial through (f(xk−2), xk−2), (f(xk−1), xk−1), (f(xk), xk), and then simply
evaluate this polynomial at y = 0 to estimate the root, thus avoiding solving quadratic equations
and possibly complex roots. Derive the iteration formula for this method.
Note: I am aware that both methods are described in Wikipedia, and you are welcome to reference
that. However, you must give complete steps of the derivation with explanations to get credit.
Writing just the final formula will get no points.

2. [Cost of barycentric interpolation, 6 pts] The degree-n Second Barycentric Interpolation Formula
that interpolates the data (x0, y0), . . . , (xn, yn) is given by:

pn(x) =

∑n
k=0 yk wk/(x− xk)∑n
k=0wk/(x− xk)

,

where

wk =

n∏
j=0, j 6=k

1

xk − xj
.

[2pts] Compute the computational cost (i.e. the number of floating point operations) required for
evaluating pn at a single point x̃ 6= xj .
[2pts] Then give the optimal (as far as you can see) computational cost for evaluating pn at N points.
[2pts] Lastly, what is the computational cost of evaluating pn at N fixed points for M different functions
(i.e., different y data).

3. [Space of polynomials, 8pts] Let Pn be the space of functions defined on [−1, 1] that can be described
by polynomials of degree less of equal to n with coefficients in R. The space Pn is a linear space in the
sense of abstract linear algebra. The n+ 1 monomials {1, x, x2, . . . , xn} are a basis for Pn.

(a) [2pts] Show that for pairwise distinct points x0, x1, . . . , xn ∈ [−1, 1], the Lagrange polynomials
Lk(x) are in Pn, and that they are linearly independent. Note that this implies that the (n + 1)
Lagrange polynomials also form a basis of Pn.

(b) [3pts] Since both the monomials and the Lagrange polynomials are a basis of Pn, each p ∈ Pn can
be written as linear combination of monomials as well as Lagrange polynomials, i.e.,

p(x) =

n∑
k=0

βkLk(x) =

n∑
k=0

αkx
k, (1)

1

with appropriate coefficients αk, βk ∈ R. As you know from linear algebra, there exists a basis
transformation matrix V that converts the coefficients α = (α0, . . . , αn)

T to the coefficients and
vice versa β = (β0, . . . , βn)

T . Write down this matrix, either for the transformation α = V β or
β = Vα, whichever is easier for you.

(c) [3pts] Note that since V transforms one basis into another basis, it must be an invertible matrix.
Write a computer code to compute the 2-norm condition number κ2(V) for n = 5, 15, 25 with
uniformly spaced nodes xi = −1 + (2i)/n, i = 0, . . . , n. Based on the condition numbers, can
this basis transformation be computed accurately numerically in double-precision floating-point
arithmetic?

4. [Polynomial interpolation versus least squares fitting, 4pts] Previously, we have used a least squared
approach to fit functions to data points. We are given the points:

i 0 1 2 3 4 5

X 0.0 0.5 1.0 1.5 2.0 2.5

Y 0.0 0.20 0.27 0.30 0.32 0.33

(a) [3pts] Write down the (probably overdetermined) linear system associated to finding the cubic best
fit polynomial

Y = aX3 + bX2 + cX + d .

using (i) all six points, (ii) only the data for i = 0, 1, 2, 3, 4, and (iii) i = 0, 1, 2, 3. In each case
solve the system and plot both the data points and the polynomial. Why is case (iii) different from
the other two cases.

(b) [1pt] What is the degree of the polynomial you would have to use so that the solution interpolates
(i.e., goes through) all six data points?

5. [Errors in polynomial interpolation, 8pts] Interpolate the function

f(x) =

{
1 if x ≥ 0

−1 if x < 0,

on the domain [−1, 1] using an interpolating polynomial with Chebyshev points as nodes.

(a) [3 pts] Write down an explicit formula for the polynomial of degree n = 3.

(b) [5 pts] Write code to evaluate the interpolating polynomial, using either the Lagrange or Barycentric
formula (it is OK to reuse code from Worksheets or lectures but if you use code someone else wrote
explain that and acknowledge the contribution). Note that you can use n = 3 from part (a) to test
your code (or, use polyfit/polyval as illustrated in Worksheet 5).
Make plots of the function and its approximating polynomial for 8 interpolation points. [Hint:
The polynomial must pass through the interpolation points.] Then plot the error function ε(x) =
|f(x)− p(x)| with a log scale for the y axis, for 8, 16, 32, 64, 128, 256 points. Comment on what
you observe. Do you think p(x) → f(x) as n → ∞ (points are given not based on whether the
answer is right or wrong but for your reasoning/explanation)?

2

6. [Interpolating derivatives, 8pts] Consider n nodes xk ∈ [a, b], and let Lk(x) be the Lagrange polyno-
mial associated with node k.

(a) [4 pts] Show that the polynomial

Kk(x) = (Lk(x))
2 (x− xk)

satisfies

Kk (xi) = 0 ∀i
K ′k (xi) = δik,

where δik is the Kronecker delta symbol (one if i = k, zero otherwise).

(b) [4 pts] From this result, find a polynomial p(x) that has x = 0, 1, 2 as roots (it may have more
roots), and satisfies

p′(0) = 1, p′(1) = −1, p′(2) = 2.

[Hint: Think back to Lagrange interpolation and use the same idea.] Make sure you test/validate
your result.

3

