
Numerical Analysis
Roundoff Errors

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-UA.0252/MA-UY 4424, Spring 2021

Spring 2021

A. Donev (Courant Institute) Roundoff 2/2021 1 / 31

Floating-point numbers

Outline

1 Floating-point numbers

2 Floating-Point Computations

3 Propagation of Roundoff Errors

4 Loss of digits

5 Cancellation of digits

A. Donev (Courant Institute) Roundoff 2/2021 2 / 31

Floating-point numbers

Representing Real Numbers

Computers represent everything using bit strings, i.e., integers in
base-2. Integers can thus be exactly represented. But not real
numbers! This leads to roundoff errors.

Assume we have N digits to represent real numbers on a computer
that can represent integers using a given number system, say decimal
for human purposes.

Fixed-point representation of numbers

x = (−1)s · [aN−2aN−3 . . . ak . ak−1 . . . a0]

has a problem with representing large or small numbers: 1.156 but
0.011.

A. Donev (Courant Institute) Roundoff 2/2021 3 / 31

Floating-point numbers

Floating-Point Numbers

Instead, it is better to use a floating-point representation

x = (−1)s · [0 . a1a2 . . . at] · βe = (−1)s ·m · βe−t ,

akin to the common scientific number representation: 0.1156 · 101

and 0.1156 · 10−1.

A floating-point number in base β is represented using one sign bit
s = 0 or 1, a t-digit integer mantissa 0 ≤ m = [a1a2 . . . at] ≤ βt − 1,
and an integer exponent L ≤ e ≤ U.

Computers today use binary numbers (bits), β = 2.

Also, for hardware reasons, numbers come in 32-bit and 64-bit
packets (words), sometimes 128 bits also (powers of two).

A. Donev (Courant Institute) Roundoff 2/2021 4 / 31

Floating-point numbers

The IEEE Standard for Floating-Point Arithmetic (IEEE
754)

The IEEE 754 (also IEC559) standard documents:

Formats for representing and encoding real numbers using bit strings
(single and double precision).

Rounding algorithms for performing accurate arithmetic operations
(e.g., addition,subtraction,division,multiplication) and conversions
(e.g., single to double precision).

Exception handling for special situations (e.g., division by zero and
overflow, not a number like

√
−1 in real numbers).

A. Donev (Courant Institute) Roundoff 2/2021 5 / 31

Floating-point numbers

IEEE Standard Representations

Normalized single precision floating-point numbers (single in
MATLAB, float in C/C++) use 32 bits = 4 bytes to store sign +
power + mantissa:

Ns + Np + Nf = 1 + 8 + 23 = 32 bits

For example, x = 2752 = 0.2752 · 104. Converting 2752 to the binary
number system

x = 211 + 29 + 27 + 26 = (101011000000)2 = 211 · (1.01011)2

is represented internally as the 32-bit string
[0 | 100, 0101, 0 | 010, 1100, 0000, 0000, 0000, 0000] (details
not important).
Double precision numbers (default in MATLAB, double in
C/C++) follow the same principle, but use 64 bits=8 bytes to give
higher precision and range

Ns + Np + Nf = 1 + 11 + 52 = 64 bits

A. Donev (Courant Institute) Roundoff 2/2021 6 / 31

Floating-Point Computations

Outline

1 Floating-point numbers

2 Floating-Point Computations

3 Propagation of Roundoff Errors

4 Loss of digits

5 Cancellation of digits

A. Donev (Courant Institute) Roundoff 2/2021 7 / 31

Floating-Point Computations

Important Facts about Floating-Point

Not all real numbers x , or even integers, can be represented exactly as
a floating-point number, instead, they must be rounded to the
nearest floating point number x̂ = fl(x).
The relative spacing or gap between a floating-point x and the
nearest other one is at most ε = 2−Nf , sometimes called ulp (unit of
least precision). In particular, 1 + ε is the first floating-point number
larger than 1.
Floating-point numbers have a relative rounding error that is
smaller than the machine precision or roundoff-unit u,

|x̂ − x |
|x |

≤ u = 2−(Nf +1) =

{
2−24 ≈ 6.0 · 10−8 for single precision

2−53 ≈ 1.1 · 10−16 for double precision

The rule of thumb is that single precision gives 7-8 digits of
precision and double 16 digits.
There is a smallest and largest possible number due to the limited
range for the exponent.

A. Donev (Courant Institute) Roundoff 2/2021 8 / 31

Floating-Point Computations

Important Floating-Point Constants

Important: MATLAB uses double precision by default (for good reasons!).
Use x=single(value) to get a single-precision number.

MATLAB code Single precision Double precision

ε eps, eps(’single’) 2−23 ≈ 1.2 · 10−7 2−52 ≈ 2.2 · 10−16

xmax realmax 2128 ≈ 3.4 · 1038 21024 ≈ 1.8 · 10308

xmin realmin 2−126 ≈ 1.2 · 10−38 2−1022 ≈ 2.2 · 10−308

A. Donev (Courant Institute) Roundoff 2/2021 9 / 31

Floating-Point Computations

IEEE Arithmetic

The IEEE standard specifies that the basic arithmetic operations
(addition,subtraction,multiplication,division) ought to be performed
using rounding to the nearest number of the exact result:

x̂ } ŷ = x̂ ◦ y

This guarantees that such operations are performed to within machine
precision in relative error.

Floating-point addition and multiplication are not associative but
they are commutative.

Operations with infinities follow sensible mathematical rules (e.g.,
finite/inf = 0).

Any operation involving not-a-number or NaN’s gives a NaN.

A. Donev (Courant Institute) Roundoff 2/2021 10 / 31

Floating-Point Computations

Floating-Point in Practice

Most scientific software uses double precision to avoid range and
accuracy issues with single precision (better be safe then sorry).
Single precision may offer speed/memory/vectorization advantages
however (e.g. GPU computing).

Do not compare floating point numbers (especially for loop
termination), or more generally, do not rely on logic from pure
mathematics.

Using parenthesis helps control order of operations, e.g.
(x + y)− z instead of x + y − z .

Library functions such as sin and ln will typically be computed almost
to full machine accuracy, but do not rely on that for special/complex
functions.

A. Donev (Courant Institute) Roundoff 2/2021 11 / 31

Floating-Point Computations

Floating-Point Exceptions

Computing with floating point values may lead to exceptions, which
may be trapped or halt the program:

Divide-by-zero if the result is ±∞, e.g., 1/0.
Invalid if the result is a NaN, e.g., taking

√
−1 (but not

MATLAB uses complex numbers!).
Overflow if the result is too large to be represented, e.g., adding

two numbers, each on the order of realmax .
Underflow if the result is too small to be represented, e.g., dividing

a number close to realmin by a large number.

Numerical software needs to be careful about avoiding exceptions
where possible:
Mathematically equivalent expressions (forms) are not
necessarily computationally-equivalent!

A. Donev (Courant Institute) Roundoff 2/2021 12 / 31

Propagation of Roundoff Errors

Outline

1 Floating-point numbers

2 Floating-Point Computations

3 Propagation of Roundoff Errors

4 Loss of digits

5 Cancellation of digits

A. Donev (Courant Institute) Roundoff 2/2021 13 / 31

Propagation of Roundoff Errors

Propagation of Errors

Assume that we are calculating something with numbers that are not
exact, e.g., a rounded floating-point number x̂ versus the exact real
number x .

For IEEE floating-point numbers, recall that we are guaranteed a
relative error due to roundoff

|x̂ − x |
|x |

≤ u =

{
6.0 · 10−8 for single precision

1.1 · 10−16 for double precision

How does the relative error change (propagate) during numerical
calculations?

In general, the absolute error δx = x̂ − x may have contributions
from different sources of error (roundoff, mathematical
approximations of limits, truncating infinite iterations or sums, etc.).

A. Donev (Courant Institute) Roundoff 2/2021 14 / 31

Propagation of Roundoff Errors

Propagation of Errors: Multiplication/Division

For multiplication and division, the bounds for the relative error in
the operands are added to give an estimate of the relative error in the
result:

εxy =

∣∣∣∣(x + δx) (y + δy)− xy

xy

∣∣∣∣ =

∣∣∣∣δx

x
+
δy

y
+
δx

x

δy

y

∣∣∣∣ / εx + εy .

This means that multiplication and division are safe, since operating
on accurate input gives an output with similar accuracy.

A. Donev (Courant Institute) Roundoff 2/2021 15 / 31

Propagation of Roundoff Errors

Addition/Subtraction

For addition and subtraction, however, the bounds on the absolute
errors add to give an estimate of the absolute error in the result:

|δ(x + y)| = |(x + δx) + (y + δy)− (x + y)| = |δx + δy | < |δx |+|δy | .

This is much more dangerous since the relative error is not
controlled, leading to so-called catastrophic cancellation.

Adding or subtracting two numbers of widely-differing magnitude
leads to loss of accuracy due to roundoff error.

If you do arithmetic with only 5 digits of accuracy, and you calculate

1.0010 + 0.00013000 = 1.0011,

only registers one of the digits of the small number!

A. Donev (Courant Institute) Roundoff 2/2021 16 / 31

Loss of digits

Outline

1 Floating-point numbers

2 Floating-Point Computations

3 Propagation of Roundoff Errors

4 Loss of digits

5 Cancellation of digits

A. Donev (Courant Institute) Roundoff 2/2021 17 / 31

Loss of digits

Loss of Digits

This type of roundoff error can accumulate when adding many terms,
such as calculating infinite sums.

As an example, consider computing the harmonic sum numerically:

H(N) =
N∑
i=1

1

i
= Ψ(N + 1) + γ,

where the digamma special function Ψ is psi in MATLAB.

For large N, Ψ(N + 1) ≈ ln (N) .

We can do the sum in forward or in reverse order (in single or
double precision).

A. Donev (Courant Institute) Roundoff 2/2021 18 / 31

Loss of digits

Cancellation Error

% C a l c u l a t i n g t he harmonic sum f o r a g i v e n i n t e g e r N:
funct ion nhsum=harmonic (N)

nhsum =0.0;
f o r i =1:N % Or , f o r i=N:−1:1

nhsum=nhsum +1.0/ i ;
end

end

A. Donev (Courant Institute) Roundoff 2/2021 19 / 31

Loss of digits

contd.

c l e a r a l l ; format compact ; format l o n g e

n p t s =25;
Ns=zeros (1 , n p t s) ;
hsum=zeros (1 , n p t s) ;
r e l e r r=zeros (1 , n p t s) ;
nhsum=zeros (1 , n p t s) ;
Euler gamma = p s i (1) % A c t u a l v a l u e o f E u l e r c o n s t a n t
f o r i =1: n p t s

Ns (i)=2ˆ i ;
nhsum (i)=harmonic (Ns (i)) ;
hsum (i)=(p s i (Ns (i)+1)− p s i (1)) ; % T h e o r e t i c a l r e s u l t
r e l e r r (i)=abs (nhsum (i)−hsum (i)) / hsum (i) ;

gamma = nhsum (i)− l n (Ns (i))
end

A. Donev (Courant Institute) Roundoff 2/2021 20 / 31

Loss of digits

contd.

f i g u r e (1) ;
l o g l o g (Ns , r e l e r r , ’ ro−− ’) ;
t i t l e (’ E r r o r i n harmonic sum ’) ;
x l a b e l (’N ’) ; y l a b e l (’ R e l a t i v e e r r o r ’) ;

f i g u r e (2) ;
s e m i l o g x (Ns , nhsum , ’ ro−− ’ , Ns , hsum , ’ g.− ’) ;
t i t l e (’ Harmonic sum ’) ;
x l a b e l (’N ’) ; y l a b e l (’H(N) ’) ;
l egend (’ d o u b l e ’ , ’ ”e x a c t ” ’ , ’ L o c a t i o n ’ , ’ NorthWest ’) ;

A. Donev (Courant Institute) Roundoff 2/2021 21 / 31

Loss of digits

Results: Forward summation

10
0

10
2

10
4

10
6

10
8

0

2

4

6

8

10

12

14

16

18
Harmonic sum

N

H
(N

)

double

single

"exact"

A. Donev (Courant Institute) Roundoff 2/2021 22 / 31

Loss of digits

Forward summation error

10
0

10
2

10
4

10
6

10
8

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error in harmonic sum

N

R
e
la

ti
v
e
 e

rr
o
r

double

single

A. Donev (Courant Institute) Roundoff 2/2021 23 / 31

Loss of digits

Results: Backward summation

10
0

10
2

10
4

10
6

10
8

0

2

4

6

8

10

12

14

16

18
Harmonic sum

N

H
(N

)

double

single

"exact"

A. Donev (Courant Institute) Roundoff 2/2021 24 / 31

Loss of digits

Backward summation error

10
0

10
2

10
4

10
6

10
8

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Error in harmonic sum

N

R
e
la

ti
v
e
 e

rr
o
r

double

single

A. Donev (Courant Institute) Roundoff 2/2021 25 / 31

Loss of digits

Explanation of results

The numerical forward sum will stop increasing when

1

N
≈ u · ln N

Solving this nonlinear equation (try it!) for single precision gives
N ≈ 6.245 · 105 ∼ 106, which is about what we see.

For double precision, we get N ≈ 1.4 · 1014 (let’s check).

Backward summation harder to explain but clearly much better,
though not perfect.

A. Donev (Courant Institute) Roundoff 2/2021 26 / 31

Cancellation of digits

Outline

1 Floating-point numbers

2 Floating-Point Computations

3 Propagation of Roundoff Errors

4 Loss of digits

5 Cancellation of digits

A. Donev (Courant Institute) Roundoff 2/2021 27 / 31

Cancellation of digits

Numerical Cancellation

If x and y are close to each other, x − y can have reduced accuracy
due to catastrophic cancellation.
For example, using 5 significant digits we get

1.1234− 1.1223 = 0.0011,

which only has 2 significant digits!

If gradual underflow is not supported x − y can be zero even if x and
y are not exactly equal.

Consider, for example, computing the smaller root of the quadratic
equation

x2 − 2x + c = 0

for |c| � 1, and focus on propagation/accumulation of roundoff
error.

A. Donev (Courant Institute) Roundoff 2/2021 28 / 31

Cancellation of digits

Cancellation example

Let’s first try the obvious formula

x = 1−
√

1− c.

Note that if |c| ≤ u the subtraction 1− c will give 1 and thus x = 0.
How about

u � |c| � 1?

The calculation of 1− c ≈ 1 in double-precision arithmetic will
ignore/loose all digits in c after the 16th.

For example, if c = 10−9, we will only keep about 16− 9 = 7 digits,
loosing 16− 7 = 9 digits of accuracy!

A. Donev (Courant Institute) Roundoff 2/2021 29 / 31

Cancellation of digits

Avoiding Cancellation

For small c the solution is

x = 1−
√

1− c ≈ c

2
,

but we already lost all digits in c after the 16th, so we have made an
absolute error of order u.

Just using the Taylor series result, x ≈ c
2 , already provides a good

approximation for small c. Here we can do better!

Rewriting in mathematically-equivalent but numerically-preferred
form is the first try, e.g., instead of

1−
√

1− c use
c

1 +
√

1− c
,

which does not suffer any problem as c becomes smaller, even smaller
than roundoff!

A. Donev (Courant Institute) Roundoff 2/2021 30 / 31

Cancellation of digits

Example/practice (maybe worksheet)

There are many methods to compute many digits of π, and lots of them
suffer from numerical accuracy problems. Here is one of them due to
Archimedes: Start with t0 = 1/

√
3 and then iterate

ti+1 =

√
1 + t2

i − 1

ti
(1)

and for large i you can get a good approximation 6 · 2i · ti → π.

1 Do this calculation with Matlab, and report how many digits of
accuracy you get and after how many iterations (Note: MATLAB has
a built-in constant pi), accompanied with some plots of the
convergence. Can you explain what you see?

2 Find a way to rewrite the iteration (1) so that you avoid roundoff
errors. Repeat the calculation and report how many digits of π you
get then.

Another example in worksheet 1 (numerical differentiation).
A. Donev (Courant Institute) Roundoff 2/2021 31 / 31

	Floating-point numbers
	Floating-Point Computations
	Propagation of Roundoff Errors
	Loss of digits
	Cancellation of digits

