Numerical Analysis Roundoff Errors

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ Course MATH-UA.0252/MA-UY_4424, Spring 2021

Spring 2021

Outline

(1) Floating-point numbers
(2) Floating-Point Computations
(3) Propagation of Roundoff Errors

4 Loss of digits
(5) Cancellation of digits

Representing Real Numbers

- Computers represent everything using bit strings, i.e., integers in base-2. Integers can thus be exactly represented. But not real numbers! This leads to roundoff errors.
- Assume we have N digits to represent real numbers on a computer that can represent integers using a given number system, say decimal for human purposes.
- Fixed-point representation of numbers

$$
x=(-1)^{s} \cdot\left[a_{N-2} a_{N-3} \ldots a_{k} \cdot a_{k-1} \ldots a_{0}\right]
$$

has a problem with representing large or small numbers: 1.156 but 0.011 .

Floating-Point Numbers

- Instead, it is better to use a floating-point representation

$$
x=(-1)^{s} \cdot\left[0 \cdot a_{1} a_{2} \ldots a_{t}\right] \cdot \beta^{e}=(-1)^{s} \cdot m \cdot \beta^{e-t}
$$

akin to the common scientific number representation: $0.1156 \cdot 10^{1}$ and $0.1156 \cdot 10^{-1}$.

- A floating-point number in base β is represented using one sign bit $s=0$ or 1 , a t-digit integer mantissa $0 \leq m=\left[a_{1} a_{2} \ldots a_{t}\right] \leq \beta^{t}-1$, and an integer exponent $L \leq e \leq U$.
- Computers today use binary numbers (bits), $\beta=2$.
- Also, for hardware reasons, numbers come in 32-bit and 64-bit packets (words), sometimes 128 bits also (powers of two).

The IEEE Standard for Floating-Point Arithmetic (IEEE 754)

The IEEE 754 (also IEC559) standard documents:

- Formats for representing and encoding real numbers using bit strings (single and double precision).
- Rounding algorithms for performing accurate arithmetic operations (e.g., addition,subtraction,division,multiplication) and conversions (e.g., single to double precision).
- Exception handling for special situations (e.g., division by zero and overflow, not a number like $\sqrt{-1}$ in real numbers).

IEEE Standard Representations

- Normalized single precision floating-point numbers (single in MATLAB, float in $C / C++$) use 32 bits $=4$ bytes to store sign + power + mantissa:

$$
N_{s}+N_{p}+N_{f}=1+8+23=32 \text { bits }
$$

- For example, $x=2752=0.2752 \cdot 10^{4}$. Converting 2752 to the binary number system

$$
x=2^{11}+2^{9}+2^{7}+2^{6}=(101011000000)_{2}=2^{11} \cdot(1.01011)_{2}
$$

is represented internally as the 32-bit string $\left[\begin{array}{l|l|l}0 & 100,0101,0 & \mid 010,1100,0000,0000,0000,0000] \text { (details }\end{array}\right.$ not important).

- Double precision numbers (default in MATLAB, double in $C / C++$) follow the same principle, but use 64 bits= $\mathbf{8}$ bytes to give higher precision and range

$$
N_{s}+N_{p}+N_{f}=1+11+52=64 \text { bits }
$$

Outline

(1) Floating-point numbers

(2) Floating-Point Computations

(3) Propagation of Roundoff Errors

4 Loss of digits
(5) Cancellation of digits

Important Facts about Floating-Point

- Not all real numbers x, or even integers, can be represented exactly as a floating-point number, instead, they must be rounded to the nearest floating point number $\hat{x}=\mathrm{fl}(x)$.
- The relative spacing or gap between a floating-point x and the nearest other one is at most $\epsilon=2^{-N_{f}}$, sometimes called ulp (unit of least precision). In particular, $1+\epsilon$ is the first floating-point number larger than 1.
- Floating-point numbers have a relative rounding error that is smaller than the machine precision or roundoff-unit u,

$$
\frac{|\hat{x}-x|}{|x|} \leq u=2^{-\left(N_{f}+1\right)}=\left\{\begin{array}{l}
2^{-24} \approx 6.0 \cdot 10^{-8} \\
2^{-53} \approx 1.1 \cdot 10^{-16}
\end{array}\right.
$$

for single precision
for double precision
The rule of thumb is that single precision gives 7-8 digits of precision and double 16 digits.

- There is a smallest and largest possible number due to the limited range for the exponent.

Important Floating-Point Constants

Important: MATLAB uses double precision by default (for good reasons!). Use $x=$ single (value) to get a single-precision number.

	MATLAB code	Single precision	Double precision
ϵ	eps, eps('single')	$2^{-23} \approx 1.2 \cdot 10^{-7}$	$2^{-52} \approx 2.2 \cdot 10^{-16}$
$x_{\max }$	realmax	$2^{128} \approx 3.4 \cdot 10^{38}$	$2^{1024} \approx 1.8 \cdot 10^{308}$
$x_{\min }$	realmin	$2^{-126} \approx 1.2 \cdot 10^{-38}$	$2^{-1022} \approx 2.2 \cdot 10^{-308}$

IEEE Arithmetic

- The IEEE standard specifies that the basic arithmetic operations (addition,subtraction,multiplication, division) ought to be performed using rounding to the nearest number of the exact result:

$$
\hat{x} \odot \hat{y}=\widehat{x \circ y}
$$

- This guarantees that such operations are performed to within machine precision in relative error.
- Floating-point addition and multiplication are not associative but they are commutative.
- Operations with infinities follow sensible mathematical rules (e.g., finite $/$ inf $=0$).
- Any operation involving not-a-number or NaN 's gives a NaN .

Floating-Point in Practice

- Most scientific software uses double precision to avoid range and accuracy issues with single precision (better be safe then sorry). Single precision may offer speed/memory/vectorization advantages however (e.g. GPU computing).
- Do not compare floating point numbers (especially for loop termination), or more generally, do not rely on logic from pure mathematics.
- Using parenthesis helps control order of operations, e.g. $(x+y)-z$ instead of $x+y-z$.
- Library functions such as sin and In will typically be computed almost to full machine accuracy, but do not rely on that for special/complex functions.

Floating-Point Exceptions

- Computing with floating point values may lead to exceptions, which may be trapped or halt the program:
Divide-by-zero if the result is $\pm \infty$, e.g., $1 / 0$.
Invalid if the result is a $N a N$, e.g., taking $\sqrt{-1}$ (but not MATLAB uses complex numbers!).
Overflow if the result is too large to be represented, e.g., adding two numbers, each on the order of realmax.
Underflow if the result is too small to be represented, e.g., dividing a number close to realmin by a large number.
- Numerical software needs to be careful about avoiding exceptions where possible:
Mathematically equivalent expressions (forms) are not necessarily computationally-equivalent!

Outline

(1) Floating-point numbers

(2) Floating-Point Computations
(3) Propagation of Roundoff Errors

4 Loss of digits
(5) Cancellation of digits

Propagation of Errors

- Assume that we are calculating something with numbers that are not exact, e.g., a rounded floating-point number \hat{x} versus the exact real number x.
- For IEEE floating-point numbers, recall that we are guaranteed a relative error due to roundoff

$$
\frac{|\hat{x}-x|}{|x|} \leq u= \begin{cases}6.0 \cdot 10^{-8} & \text { for single precision } \\ 1.1 \cdot 10^{-16} & \text { for double precision }\end{cases}
$$

- How does the relative error change (propagate) during numerical calculations?
- In general, the absolute error $\delta x=\hat{x}-x$ may have contributions from different sources of error (roundoff, mathematical approximations of limits, truncating infinite iterations or sums, etc.).

Propagation of Errors: Multiplication/Division

- For multiplication and division, the bounds for the relative error in the operands are added to give an estimate of the relative error in the result:

$$
\epsilon_{x y}=\left|\frac{(x+\delta x)(y+\delta y)-x y}{x y}\right|=\left|\frac{\delta x}{x}+\frac{\delta y}{y}+\frac{\delta x}{x} \frac{\delta y}{y}\right| \lesssim \epsilon_{x}+\epsilon_{y} .
$$

- This means that multiplication and division are safe, since operating on accurate input gives an output with similar accuracy.

Addition/Subtraction

- For addition and subtraction, however, the bounds on the absolute errors add to give an estimate of the absolute error in the result:

$$
|\delta(x+y)|=|(x+\delta x)+(y+\delta y)-(x+y)|=|\delta x+\delta y|<|\delta x|+|\delta y|
$$

- This is much more dangerous since the relative error is not controlled, leading to so-called catastrophic cancellation.
- Adding or subtracting two numbers of widely-differing magnitude leads to loss of accuracy due to roundoff error.
- If you do arithmetic with only 5 digits of accuracy, and you calculate

$$
1.0010+0.00013000=1.0011
$$

only registers one of the digits of the small number!

Outline

(1) Floating-point numbers

(2) Floating-Point Computations
(3) Propagation of Roundoff Errors

4 Loss of digits
(5) Cancellation of digits

Loss of Digits

- This type of roundoff error can accumulate when adding many terms, such as calculating infinite sums.
- As an example, consider computing the harmonic sum numerically:

$$
H(N)=\sum_{i=1}^{N} \frac{1}{i}=\Psi(N+1)+\gamma
$$

where the digamma special function Ψ is $p s i$ in MATLAB.

- For large $N, \Psi(N+1) \approx \ln (N)$.
- We can do the sum in forward or in reverse order (in single or double precision).

Cancellation Error

\% Calculating the harmonic sum for a given integer N : function nhsum=harmonic(N)
nhsum $=0.0$;
for $\mathrm{i}=1: \mathrm{N} \%$ Or, for $i=\mathrm{N}:-1: 1$ nhsum=nhsum $+1.0 / \mathrm{i}$;
end
end

contd.

clear all; format compact; format long e

$$
\text { npts }=25 ;
$$

Ns=zeros(1,npts);
hsum=zeros(1,npts);
relerr=zeros (1,npts);
nhsum=zeros(1,npts);
Euler_gamma $=$ psi(1) \% Actual value of Euler constant
for $\mathrm{i}=1$: npts
$\mathrm{Ns}(\mathrm{i})=2^{\wedge} \mathrm{i}$;
nhsum (i)=harmonic(Ns(i));
hsum(i) $=($ psi(Ns(i)+1)-psi(1)); \% Theoretical result relerr(i)=abs(nhsum (i)-hsum(i))/hsum (i);
gamma $=$ nhsum $(i)-\ln (\operatorname{Ns}(i))$
end

contd.

```
figure (1);
loglog(Ns,relerr,'ro-');
title('Error_in_harmonic_sum');
xlabel('N'); ylabel('Relative error');
figure(2);
semilogx(Ns,nhsum,'ro-_', Ns,hsum,'g.-');
title('Harmonic_sum');
xlabel('N'); ylabel('H(N)');
legend('double','"exact"', 'Location','NorthWest');
```


Results: Forward summation

Harmonic sum

Forward summation error

Results: Backward summation

Harmonic sum

Backward summation error

Error in harmonic sum

Explanation of results

- The numerical forward sum will stop increasing when

$$
\frac{1}{N} \approx u \cdot \ln N
$$

- Solving this nonlinear equation (try it!) for single precision gives $N \approx 6.245 \cdot 10^{5} \sim 10^{6}$, which is about what we see.
- For double precision, we get $N \approx 1.4 \cdot 10^{14}$ (let's check).
- Backward summation harder to explain but clearly much better, though not perfect.

Outline

(1) Floating-point numbers

(2) Floating-Point Computations
(3) Propagation of Roundoff Errors
(4) Loss of digits
(5) Cancellation of digits

Numerical Cancellation

- If x and y are close to each other, $x-y$ can have reduced accuracy due to catastrophic cancellation.
For example, using 5 significant digits we get

$$
1.1234-1.1223=0.0011
$$

which only has 2 significant digits!

- If gradual underflow is not supported $x-y$ can be zero even if x and y are not exactly equal.
- Consider, for example, computing the smaller root of the quadratic equation

$$
x^{2}-2 x+c=0
$$

for $|c| \ll 1$, and focus on propagation/accumulation of roundoff error.

Cancellation example

- Let's first try the obvious formula

$$
x=1-\sqrt{1-c}
$$

- Note that if $|c| \leq u$ the subtraction $1-c$ will give 1 and thus $x=0$. How about

$$
u \ll|c| \ll 1 ?
$$

- The calculation of $1-c \approx 1$ in double-precision arithmetic will ignore/loose all digits in c after the 16th.
- For example, if $c=10^{-9}$, we will only keep about $16-9=7$ digits, loosing $16-7=9$ digits of accuracy!

Avoiding Cancellation

- For small c the solution is

$$
x=1-\sqrt{1-c} \approx \frac{c}{2}
$$

but we already lost all digits in c after the 16 th, so we have made an absolute error of order u.

- Just using the Taylor series result, $x \approx \frac{c}{2}$, already provides a good approximation for small c. Here we can do better!
- Rewriting in mathematically-equivalent but numerically-preferred form is the first try, e.g., instead of

$$
1-\sqrt{1-c} \text { use } \frac{c}{1+\sqrt{1-c}}
$$

which does not suffer any problem as c becomes smaller, even smaller than roundoff!

Example/practice (maybe worksheet)

There are many methods to compute many digits of π, and lots of them suffer from numerical accuracy problems. Here is one of them due to Archimedes: Start with $t_{0}=1 / \sqrt{3}$ and then iterate

$$
\begin{equation*}
t_{i+1}=\frac{\sqrt{1+t_{i}^{2}}-1}{t_{i}} \tag{1}
\end{equation*}
$$

and for large i you can get a good approximation $6 \cdot 2^{i} \cdot t_{i} \rightarrow \pi$.
(1) Do this calculation with Matlab, and report how many digits of accuracy you get and after how many iterations (Note: MATLAB has a built-in constant pi), accompanied with some plots of the convergence. Can you explain what you see?
(2) Find a way to rewrite the iteration (1) so that you avoid roundoff errors. Repeat the calculation and report how many digits of π you get then.

Another example in worksheet 1 (numerical differentiation).

