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Function spaces
Function Spaces

@ Function spaces are the equivalent of finite vector spaces for
functions (space of polynomial functions P, space of smoothly
twice-differentiable functions C2, etc.).

o Consider a one-dimensional interval | = [a, b]. Standard norms for
functions similar to the usual vector norms:

o Maximum norm: ||f(x)| . = maxe |f(x)]
o Ly norm: ||F(x)[l, = [2|F(x)| dx

- b 2, 112
o Euclidian L, norm: ||f(x)|, = [fa |f(x)] dx}

. b 2 1/2
o Weighted norm: ||f(x)||, = [ I (x| W(X)dx}

@ An L, inner or scalar product (equivalent of dot product for
vectors):

b
(F.2), = / F(x)g™ (x)dx
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Function spaces
Finite-Dimensional Function Spaces

e Formally, function spaces are infinite-dimensional linear spaces.
Numerically we always truncate and use a finite basis.

o Consider a set of m+ 1 equispaced nodes x; = ihe X C [/,
i=0,...,m, and define:

1/2
= — p/2
IFCll; = [hZ!f ] W= fxlly = 1)z,

which is equivalent to thinking of the function as being the vector
fr =y = {f(x0), F(x1), - . Fxm)}.

o Finite representations lead to semi-norms, but this is not that
important.

@ A discrete dot product can be just the vector product:

(f,g) _h(fX gX)_hZleg (X/) (f g)
i=0
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Function spaces
Function Space Basis

@ Think of a function as a vector of coefficients in terms of a set of n
basis functions:

{(;SO(X)? d)l(x)u R 7¢H(X)} )
for example, the monomial basis ¢x(x) = x* for polynomials.

@ A finite-dimensional approximation to a given function f(x):

n

F(x) =Y cidi(x)

i=1

o Least-squares approximation for m > n (usually m > n):
c* = argmin Hf(x) - ?(X)H2 ,
(o}

which gives the orthogonal projection of f(x) onto the
finite-dimensional basis.
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Function spaces

Choosing the right basis functions

@ There are many mathematically equivalent ways to rewrite the unique
interpolating polynomial:

x? —2x+4 = (x —2)2

@ One can think of this as choosing a different polynomial basis
{bo(x), d1(x), ..., Pdm(x)} for the function space of polynomials of

degree at most m:
m

¢(x) = aigi(x)
i=0
@ For a given basis, the coefficients a can easily be found by solving the
linear system

m

o0g) =D aigilx) =y, = ®da=y

i=0
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Function spaces
Lagrange basis

@ Instead of writing polynomials as sums of monomials, let's consider a
more general polynomial basis {¢o(x), $1(x), ..., dm(x)}:

m

$(x) =Y aigi(x),

i=0
asin x> —2x +4 = (x — 2)°.

@ In particular let's consider the Lagrange basis which consists of
polynomials that vanish at all but exactly one of the nodes, where
they are unity:

1 ifi=j
i(x;) =05 = .
Pilg) =0 {0 if i #j

@ The following characteristic polynomial provides the desired basis:
Hj;éi (x = xj)
Hj;éi (xi = xj)
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Function spaces

Lagrange basis on 10 nodes

A few Lagrange basis functions for 10 nodes
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Advanced: Orthogonal Polynomials

Orthogonal Polynomials

@ Any finite interval [a, b] can be transformed to / = [—1, 1] by a simple
transformation.

e Using a weight function w(x), define a function dot product as:

b
(f.g) = / w(x) [F(x)g(x)] dx

e For different choices of the weight w(x), one can explicitly construct
basis of orthogonal polynomials where ¢,(x) is a polynomial of
degree k (triangular basis):

b
(61, 6)) = / w(x) (1) ()] dix = 5 |61

@ For Chebyshev polynomials we set w = (1 — x?)~1/2 and this gives
¢k(x) = cos (k arccos x) .
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Advanced: Orthogonal Polynomials
Legendre Polynomials

e For equal weighting w(x) = 1, the resulting triangular family of of
polynomials are called Legendre polynomials:

¢o(x) =1
¢1(x) =x
P2(x) %(3x —-1)
63() =3(5x° — 3x)
Prra(x) :2kk:—r11x k) = k+1¢k 100 = 2nln!% (=1

@ These are orthogonal on | = [—1,1]:

2
/ $i(x)@j(x)dx = 0y - 2i+1
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Advanced: Orthogonal Polynomials

Interpolation using Orthogonal Polynomials

@ Let's look at the interpolating polynomial ¢(x) of a function f(x)

on a set of m+ 1 nodes {xp,...,xm} € I, expressed in an orthogonal
basis:
m
¢(x) = aidi(x)
i=0

@ Due to orthogonality, taking a dot product with ¢; (weak
formulation):

(¢7¢j)zz (¢, ¢;) 23511 il =4 ”¢JH
i=0

i=0

e This is equivalent to normal equations if we use the right dot
product:

(*®), = (g1, ) = 0y |¢i|> and *y = (¢, ¢))
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Advanced: Orthogonal Polynomials
Gauss Integration

-1
il =(6.0) = a=(lel?) (6,4

@ Question: Can we easily compute

b b
(6.6)) = / w(x) [(x) 5 (x)] dx = / w(x)pam(x) dx

for a polynomial pom(x) = ¢(x)¢j(x) of degree at most 2m?
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Advanced: Orthogonal Polynomials
Gauss nodes

e If we choose the nodes to be zeros of ¢,,1(x), then we can quickly
project any polynomial onto the basis of orthogonal polynomials:

(¢) QSJ) = Z XI ¢J Z XI ¢J XI
i=0 i=0

where the Gauss weights w are given by

wj = / ’ w(x) i (x)dx

@ The orthogonality relation can be expressed as a sum instead of

integral:
m

(00 05) = > wigi(x:)¢5(x:) = 6 [l il®

i=0
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Advanced: Orthogonal Polynomials
Gauss-Legendre polynomials

e For any weighting function the polynomial ¢x(x) has k simple zeros
all of which are in (—1,1), called the (order k) Gauss nodes,

¢m+1(Xi) =0.
@ The interpolating polynomial ¢(x;) = f(x;) on the Gauss nodes is the
Gauss-Legendre interpolant ¢¢(x).

@ We can thus define a new weighted discrete dot product

m
f-g= Z w;figi
i=0
The Gauss-Legendre interpolant is thus easy to compute:

T fo,
deL(x) = ’
250

oi(x).

i
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Advanced: Orthogonal Polynomials

Discrete spectral approximation

@ Using orthogonal polynomails has many advantages for function
approximation: stability, rapid convergence, and computational
efficiency.

@ The convergence, for sufficiently smooth (nice) functions (analytic in
the neighborhood of [—1,1] in the complex plane), is more rapid
than any power law

1£(x) = der(x)[| ~ C,

@ This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).
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Advanced: Orthogonal Polynomials

Gauss-Legendre Interpolation

Function and approximations for n=10
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Advanced: Orthogonal Polynomials

Global polynomial interpolation error

Error for equispaced nodes for n=8,16,32,.128 Error for Gauss nodes for n=8,16,32,..128
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