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Function spaces

Function Spaces

Function spaces are the equivalent of finite vector spaces for
functions (space of polynomial functions P, space of smoothly
twice-differentiable functions C2, etc.).

Consider a one-dimensional interval I = [a, b]. Standard norms for
functions similar to the usual vector norms:

Maximum norm: ‖f (x)‖∞ = maxx∈I |f (x)|
L1 norm: ‖f (x)‖1 =

∫ b

a
|f (x)| dx

Euclidian L2 norm: ‖f (x)‖2 =
[∫ b

a
|f (x)|2 dx

]1/2
Weighted norm: ‖f (x)‖w =

[∫ b

a
|f (x)|2 w(x)dx

]1/2
An L2 inner or scalar product (equivalent of dot product for
vectors):

(f , g)L2 =

∫ b

a
f (x)g?(x)dx
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Function spaces

Finite-Dimensional Function Spaces

Formally, function spaces are infinite-dimensional linear spaces.
Numerically we always truncate and use a finite basis.

Consider a set of m + 1 equispaced nodes xi = ih ∈ X ⊂ I ,
i = 0, . . . ,m, and define:

‖f (x)‖X2 =

[
h

m∑
i=0

|f (xi )|2
]1/2

= h1/2 ‖fX ‖2 →
h→0
‖f (x)‖2 ,

which is equivalent to thinking of the function as being the vector
fX = y = {f (x0), f (x1), · · · , f (xm)}.
Finite representations lead to semi-norms, but this is not that
important.

A discrete dot product can be just the vector product:

(f , g)XL2 = h (fX · gX ) = h
m∑
i=0

f (xi )g
?(xi ) →

h→0
(f , g)L2
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Function spaces

Function Space Basis

Think of a function as a vector of coefficients in terms of a set of n
basis functions:

{φ0(x), φ1(x), . . . , φn(x)} ,

for example, the monomial basis φk(x) = xk for polynomials.

A finite-dimensional approximation to a given function f (x):

f̃ (x) =
n∑

i=1

ciφi (x)

Least-squares approximation for m > n (usually m� n):

c? = arg min
c

∥∥∥f (x)− f̃ (x)
∥∥∥
2
,

which gives the orthogonal projection of f (x) onto the
finite-dimensional basis.
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Function spaces

Choosing the right basis functions

There are many mathematically equivalent ways to rewrite the unique
interpolating polynomial:

x2 − 2x + 4 = (x − 2)2.

One can think of this as choosing a different polynomial basis
{φ0(x), φ1(x), . . . , φm(x)} for the function space of polynomials of
degree at most m:

φ(x) =
m∑
i=0

aiφi (x)

For a given basis, the coefficients a can easily be found by solving the
linear system

φ(xj) =
m∑
i=0

aiφi (xj) = yj ⇒ Φa = y

A. Donev (Courant Institute) Approx 4/2021 7 / 19



Function spaces

Lagrange basis

Instead of writing polynomials as sums of monomials, let’s consider a
more general polynomial basis {φ0(x), φ1(x), . . . , φm(x)}:

φ(x) =
m∑
i=0

aiφi (x),

as in x2 − 2x + 4 = (x − 2)2.

In particular let’s consider the Lagrange basis which consists of
polynomials that vanish at all but exactly one of the nodes, where
they are unity:

φi (xj) = δij =

{
1 if i = j

0 if i 6= j
.

The following characteristic polynomial provides the desired basis:

φi (x) =

∏
j 6=i (x − xj)∏
j 6=i (xi − xj)
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Function spaces

Lagrange basis on 10 nodes
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We see that the Lagrange polynomials develop sharp peaks near the
boundaries of the approximation interval, suggesting that so will the
interpolant φ(x) (this will lead to Runge’s phenomenon).
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Advanced: Orthogonal Polynomials

Orthogonal Polynomials

Any finite interval [a, b] can be transformed to I = [−1, 1] by a simple
transformation.

Using a weight function w(x), define a function dot product as:

(f , g) =

∫ b

a
w(x) [f (x)g(x)] dx

For different choices of the weight w(x), one can explicitly construct
basis of orthogonal polynomials where φk(x) is a polynomial of
degree k (triangular basis):

(φi , φj) =

∫ b

a
w(x) [φi (x)φj(x)] dx = δij ‖φi‖2 .

For Chebyshev polynomials we set w = (1− x2)−1/2 and this gives

φk(x) = cos (k arccos x) .
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Advanced: Orthogonal Polynomials

Legendre Polynomials

For equal weighting w(x) = 1, the resulting triangular family of of
polynomials are called Legendre polynomials:

φ0(x) =1

φ1(x) =x

φ2(x) =
1

2
(3x2 − 1)

φ3(x) =
1

2
(5x3 − 3x)

φk+1(x) =
2k + 1

k + 1
xφk(x)− k

k + 1
φk−1(x) =

1

2nn!

dn

dxn

[(
x2 − 1

)n]
These are orthogonal on I = [−1, 1]:∫ −1

−1
φi (x)φj(x)dx = δij ·

2

2i + 1
.
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Advanced: Orthogonal Polynomials

Interpolation using Orthogonal Polynomials

Let’s look at the interpolating polynomial φ(x) of a function f (x)
on a set of m + 1 nodes {x0, . . . , xm} ∈ I , expressed in an orthogonal
basis:

φ(x) =
m∑
i=0

aiφi (x)

Due to orthogonality, taking a dot product with φj (weak
formulation):

(φ, φj) =
m∑
i=0

ai (φi , φj) =
m∑
i=0

aiδij ‖φi‖2 = aj ‖φj‖2

This is equivalent to normal equations if we use the right dot
product:

(Φ?Φ)ij = (φi , φj) = δij ‖φi‖2 and Φ?y = (φ, φj)
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Advanced: Orthogonal Polynomials

Gauss Integration

aj ‖φj‖2 = (φ, φj) ⇒ aj =
(
‖φj‖2

)−1
(φ, φj)

Question: Can we easily compute

(φ, φj) =

∫ b

a
w(x) [φ(x)φj(x)] dx =

∫ b

a
w(x)p2m(x)dx

for a polynomial p2m(x) = φ(x)φj(x) of degree at most 2m?
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Advanced: Orthogonal Polynomials

Gauss nodes

If we choose the nodes to be zeros of φm+1(x), then we can quickly
project any polynomial onto the basis of orthogonal polynomials:

(φ, φj) =
m∑
i=0

wiφ(xi )φj(xi ) =
m∑
i=0

wi f (xi )φj(xi )

where the Gauss weights w are given by

wi =

∫ b

a
w(x)φi (x)dx .

The orthogonality relation can be expressed as a sum instead of
integral:

(φi , φj) =
m∑
i=0

wiφi (xi )φj(xi ) = δij ‖φi‖2
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Advanced: Orthogonal Polynomials

Gauss-Legendre polynomials

For any weighting function the polynomial φk(x) has k simple zeros
all of which are in (−1, 1), called the (order k) Gauss nodes,
φm+1(xi ) = 0.

The interpolating polynomial φ(xi ) = f (xi ) on the Gauss nodes is the
Gauss-Legendre interpolant φGL(x).

We can thus define a new weighted discrete dot product

f · g =
m∑
i=0

wi figi

The Gauss-Legendre interpolant is thus easy to compute:

φGL(x) =
m∑
i=0

f · φi

φi · φi

φi (x).
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Advanced: Orthogonal Polynomials

Discrete spectral approximation

Using orthogonal polynomails has many advantages for function
approximation: stability, rapid convergence, and computational
efficiency.

The convergence, for sufficiently smooth (nice) functions (analytic in
the neighborhood of [−1, 1] in the complex plane), is more rapid
than any power law

‖f (x)− φGL(x)‖ ∼ C−m,

This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).
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Gauss-Legendre Interpolation
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Advanced: Orthogonal Polynomials

Global polynomial interpolation error
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