# Numerical Analysis (Review of) Linear Algebra

Aleksandar Donev Courant Institute, NYU<sup>1</sup> donev@courant.nyu.edu

<sup>1</sup>Course MATH-UA.0252/MA-UY\_4424, Spring 2021

Spring 2021

1 / 21



- 2 Linear Transformations
- On Norms and Conditioning
- 4 Conditioning of linear maps



- 2 Linear Transformations
- 3 Norms and Conditioning
- 4 Conditioning of linear maps

# Linear Spaces

 A vector space V is a set of elements called vectors x ∈ V that may be multiplied by a scalar c and added, e.g.,

$$\mathbf{z} = \alpha \mathbf{x} + \beta \mathbf{y}$$

- I will denote scalars with lowercase letters and vectors with lowercase bold letters.
- Prominent examples of vector spaces are ℝ<sup>n</sup> (or more generally ℂ<sup>n</sup>), but there are many others, for example, the set of polynomials in x.
- A subspace V' ⊆ V of a vector space is a subset such that sums and multiples of elements of V' remain in V' (i.e., it is closed).
- An example is the set of vectors in  $x \in \mathbb{R}^3$  such that  $x_3 = 0$ .

# Image Space

• Consider a set of *n* vectors  $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n \in \mathbb{R}^m$  and form a **matrix** by putting these vectors as columns

$$\mathbf{A} = [\mathbf{a}_1 \,|\, \mathbf{a}_2 \,|\, \cdots \,|\, \mathbf{a}_m] \in \mathbb{R}^{m,n}.$$

- I will denote matrices with bold capital letters, and sometimes write  $\mathbf{A} = [m, n]$  to indicate dimensions.
- The matrix-vector product is defined as a linear combination of the columns:

$$\mathbf{b} = \mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n \in \mathbb{R}^m.$$

The image im(A) or range range(A) of a matrix is the subspace of all linear combinations of its columns, i.e., the set of all b's.
 It is also sometimes called the column space of the matrix.

#### Vector Spaces

#### Dimension

- The set of vectors a<sub>1</sub>, a<sub>2</sub>, · · · , a<sub>n</sub> are linearly independent or form a basis for ℝ<sup>m</sup> if b = Ax = 0 implies that x = 0.
- The dimension r = dimV of a vector (sub)space V is the number of elements in a basis. This is a property of V itself and not of the basis, for example,

$$\dim \mathbb{R}^n = n$$

Given a basis A for a vector space V of dimension n, every vector of b ∈ V can be uniquely represented as the vector of coefficients x in that particular basis,

$$\mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n.$$

A simple and common basis for ℝ<sup>n</sup> is {e<sub>1</sub>,..., e<sub>n</sub>}, where e<sub>k</sub> has all components zero except for a single 1 in position k. With this choice of basis the coefficients are simply the entries in the vector, b ≡ x.

## Kernel Space

• The dimension of the column space of a matrix is called the **rank** of the matrix  $\mathbf{A} \in \mathbb{R}^{m,n}$ ,

$$r = \operatorname{rank} \mathbf{A} \leq \min(m, n).$$

- If  $r = \min(m, n)$  then the matrix is of **full rank**.
- The **nullspace** null(**A**) or **kernel** ker(**A**) of a matrix **A** is the subspace of vectors **x** for which

$$Ax = 0.$$

- The dimension of the nullspace is called the nullity of the matrix.
- For a basis **A** the nullspace is  $null(\mathbf{A}) = \{\mathbf{0}\}$  and the nullity is zero.

## Orthogonal Spaces

- An inner-product space is a vector space together with an inner or dot product, which must satisfy some properties.
- The standard dot-product in  $\mathbb{R}^n$  is denoted with several different notations:

$$\mathbf{x} \cdot \mathbf{y} = (\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i.$$

For C<sup>n</sup> we need to add complex conjugates (here ★ denotes a complex conjugate transpose, or adjoint),

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^* \mathbf{y} = \sum_{i=1}^n \bar{x}_i y_i.$$

• Two vectors  $\mathbf{x}$  and  $\mathbf{y}$  are **orthogonal** if  $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$ .

#### Part I of Fundamental Theorem

• One of the most important theorems in linear algebra is that the sum of rank and nullity is equal to the number of columns: For  $\mathbf{A} \in \mathbb{R}^{m,n}$ 

rank  $\mathbf{A}$  + nullity  $\mathbf{A}$  = n.

- In addition to the range and kernel spaces of a matrix, two more important vector subspaces for a given matrix **A** are the:
  - Row space or coimage of a matrix is the column (image) space of its transpose, im A<sup>T</sup>.

Its dimension is also equal to the the rank.

• Left nullspace or cokernel of a matrix is the nullspace or kernel of its transpose, ker A<sup>T</sup>.

#### Part II of Fundamental Theorem

- The orthogonal complement V<sup>⊥</sup> or orthogonal subspace of a subspace V is the set of all vectors that are orthogonal to every vector in V.
- Let  $\mathcal{V}$  be the set of vectors in  $x \in \mathbb{R}^3$  such that  $x_3 = 0$ . Then  $\mathcal{V}^{\perp}$  is the set of all vectors with  $x_1 = x_2 = 0$ .
- Second fundamental theorem in linear algebra:

im  $\mathbf{A}^T = (\ker \mathbf{A})^{\perp}$ ker  $\mathbf{A}^T = (\operatorname{im} \mathbf{A})^{\perp}$ 

## 1 Vector Spaces

#### 2 Linear Transformations

- 3 Norms and Conditioning
- 4 Conditioning of linear maps

#### Linear Transformation

A function L : V → W mapping from a vector space V to a vector space W is a linear function or a linear transformation if

$$L(\alpha \mathbf{v}) = \alpha L(\mathbf{v})$$
 and  $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$ .

 Any linear transformation L can be represented as a multiplication by a matrix L

$$L(\mathbf{v}) = \mathbf{L}\mathbf{v}.$$

For the common bases of V = R<sup>n</sup> and W = R<sup>m</sup>, the product w = Lv is simply the usual matix-vector product,

$$w_i = \sum_{k=1}^n L_{ik} v_k,$$

which is simply the dot-product between the *i*-th row of the matrix and the vector  $\mathbf{v}$ .

#### Matrix algebra

$$w_i = (\mathbf{L}\mathbf{v})_i = \sum_{k=1}^n L_{ik} v_k$$

• The composition of two linear transformations  $\mathbf{A} = [m, p]$  and  $\mathbf{B} = [p, n]$  is a matrix-matrix product  $\mathbf{C} = \mathbf{AB} = [m, n]$ :

$$\mathbf{z} = \mathbf{A} \left( \mathbf{B} \mathbf{x} 
ight) = \mathbf{A} \mathbf{y} = \left( \mathbf{A} \mathbf{B} 
ight) \mathbf{x}$$

$$z_{i} = \sum_{k=1}^{n} A_{ik} y_{k} = \sum_{k=1}^{p} A_{ik} \sum_{j=1}^{n} B_{kj} x_{j} = \sum_{j=1}^{n} \left( \sum_{k=1}^{p} A_{ik} B_{kj} \right) x_{j} = \sum_{j=1}^{n} C_{ij} x_{j}$$
$$C_{ij} = \sum_{k=1}^{p} A_{lk} B_{kj}$$

Matrix-matrix multiplication is not commutative, AB \neq BA in general.

#### The Matrix Inverse

• A square matrix  $\mathbf{A} = [n, n]$  is invertible or nonsingular if there exists a matrix inverse  $\mathbf{A}^{-1} = \mathbf{B} = [n, n]$  such that:

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I},$$

where I is the identity matrix (ones along diagonal, all the rest zeros).

- The following statements are equivalent for  $\mathbf{A} \in \mathbb{R}^{n,n}$ :
  - A is invertible.
  - A is full-rank, rank A = n.
  - The columns and also the rows are linearly independent and form a basis for ℝ<sup>n</sup>.
  - The **determinant** is nonzero, det  $\mathbf{A} \neq \mathbf{0}$ .
  - Zero is not an eigenvalue of A.

#### Matrix Algebra

 Matrix-vector multiplication is just a special case of matrix-matrix multiplication. Note x<sup>T</sup>y is a scalar (dot product).

$$\mathbf{C}\left(\mathbf{A}+\mathbf{B}
ight)=\mathbf{C}\mathbf{A}+\mathbf{C}\mathbf{B}$$
 and  $\mathbf{ABC}=\left(\mathbf{AB}
ight)\mathbf{C}=\mathbf{A}\left(\mathbf{BC}
ight)$ 

$$(\mathbf{A}^{T})^{T} = \mathbf{A} \text{ and } (\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$

$$\left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A} \text{ and } \left(\mathbf{A}\mathbf{B}\right)^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \text{ and } \left(\mathbf{A}^{\mathcal{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathcal{T}}$$

• Instead of matrix division, think of multiplication by an inverse:

$$\mathbf{A}\mathbf{B} = \mathbf{C} \quad \Rightarrow \quad \left(\mathbf{A}^{-1}\mathbf{A}\right)\mathbf{B} = \mathbf{A}^{-1}\mathbf{C} \quad \Rightarrow \quad \begin{cases} \mathbf{B} &= \mathbf{A}^{-1}\mathbf{C} \\ \mathbf{A} &= \mathbf{C}\mathbf{B}^{-1} \end{cases}$$

## Vector Spaces

#### 2 Linear Transformations

#### One of the second se

#### 4 Conditioning of linear maps

#### Vector norms

- Norms are the abstraction for the notion of a length or magnitude.
- For a vector  $\mathbf{x} \in \mathbb{R}^n$ , the *p*-norm is

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

and special cases of interest are:

• The 1-norm ( $L^1$  norm or Manhattan distance),  $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$ • The 2-norm ( $L^2$  norm, **Euclidian distance**),

$$\begin{aligned} \|\mathbf{x}\|_2 &= \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^n |x_i|^2} \\ \mathbf{x}_i &= \max_{1 \le i \le n} |x_i|^2 \end{aligned}$$
The  $\infty$ -norm ( $L^{\infty}$  or maximum norm),  $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$ 

Note that all of these norms are inter-related in a finite-dimensional setting.

6

#### Matrix norms

Matrix norm induced by a given vector norm:

$$\|\mathbf{A}\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad \Rightarrow \|\mathbf{A}\mathbf{x}\| \le \|\mathbf{A}\| \|\mathbf{x}\|$$

- The last bound holds for matrices as well,  $\|\mathbf{AB}\| \le \|\mathbf{A}\| \|\mathbf{B}\|$ .
- Special cases of interest are:
  - **(a)** The 1-norm or **column sum norm**,  $\|\mathbf{A}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$ **(a)** The  $\infty$ -norm or **row sum norm**,  $\|\mathbf{A}\|_{\infty} = \max_j \sum_{i=1}^n |a_{ij}|$
  - **3** The 2-norm or **spectral norm**,  $\|\mathbf{A}\|_2 = \sigma_1$  (largest singular value)
  - The Euclidian or **Frobenius norm**,  $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$ (note this is not an induced norm)

## Vector Spaces

- 2 Linear Transformations
- 3 Norms and Conditioning
- 4 Conditioning of linear maps

# Conditioning

• Consider a function  $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ , and perturb  $\mathbf{x}$  to the **absolute** condition number

$$\mathsf{Cond}_{\mathbf{x}}(f) = \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})\|}{\|\delta \mathbf{x}\|}$$

where  $\|\delta \mathbf{x}\| \ll \|\mathbf{x}\|$  is a small perturbation (assume  $\mathbf{x} \neq \mathbf{0}$ ).

- This measures how **sensitive** the value of the function is to small errors in the input (e.g., roundoff or measurement).
- For differentiable scalar functions  $f(x \in \mathbb{R}) \in \mathbb{R}$ ,

$$\operatorname{Cond}_{x}(f) = \left| f'(x) \right|.$$

More commonly used is the relative condition number

$$\operatorname{cond}_{\mathbf{x}}(f) = \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})\| / \|\mathbf{f}(\mathbf{x})\|}{\|\delta \mathbf{x}\| / \|\mathbf{x}\|}$$

which measures the maximum relative change in the output for a given small relative change in the input.

#### Conditioning number

• Consider a linear mapping f(x) = Ax. What is the relative conditioning number?

$$\operatorname{cond}_{\mathbf{x}}(f) = \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{A}\mathbf{x}\| / \|\mathbf{A}\mathbf{x}\|}{\|\delta \mathbf{x}\| / \|\mathbf{x}\|}$$
$$= \frac{\|\mathbf{x}\|}{\|\mathbf{A}\mathbf{x}\|} \sup_{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\delta \mathbf{x}\|}{\|\delta \mathbf{x}\|} =$$
$$= \frac{\|\mathbf{x}\|}{\|\mathbf{A}\mathbf{x}\|} \|\mathbf{A}\| \ge 1.$$

• To get an upper bound, consider an invertible square A,

$$\mathsf{cond}_{\mathsf{x}}\left(f
ight) = rac{\left\|\mathsf{A}^{-1}\left(\mathsf{A}\mathsf{x}
ight)
ight\|}{\left\|\mathsf{A}\mathsf{x}
ight\|} \left\|\mathsf{A}
ight\| \leq \left\|\mathsf{A}^{-1}
ight\| rac{\left\|\mathsf{A}\mathsf{x}
ight\|}{\left\|\mathsf{A}\mathsf{x}
ight\|} \left\|\mathsf{A}
ight\|$$

which leads us to define a matrix condition number

$$\kappa\left(\mathsf{A}
ight) = \left\|\mathsf{A}^{-1}\right\| \left\|\mathsf{A}\right\| > 1.$$