Numerical Analysis (Review of) Linear Algebra

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ Course MATH-UA.0252/MA-UY_4424, Spring 2021
Spring 2021

Outline

(1) Vector Spaces
(2) Linear Transformations
(3) Norms and Conditioning

4 Conditioning of linear maps

Outline

(1) Vector Spaces

(2) Linear Transformations

(3) Norms and Conditioning

4) Conditioning of linear maps

Linear Spaces

- A vector space \mathcal{V} is a set of elements called vectors $\mathbf{x} \in \mathcal{V}$ that may be multiplied by a scalar c and added, e.g.,

$$
\mathbf{z}=\alpha \mathbf{x}+\beta \mathbf{y}
$$

- I will denote scalars with lowercase letters and vectors with lowercase bold letters.
- Prominent examples of vector spaces are \mathbb{R}^{n} (or more generally \mathbb{C}^{n}), but there are many others, for example, the set of polynomials in x.
- A subspace $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ of a vector space is a subset such that sums and multiples of elements of \mathcal{V}^{\prime} remain in \mathcal{V}^{\prime} (i.e., it is closed).
- An example is the set of vectors in $x \in \mathbb{R}^{3}$ such that $x_{3}=0$.

Image Space

- Consider a set of n vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ and form a matrix by putting these vectors as columns

$$
\mathbf{A}=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \cdots \mid \mathbf{a}_{m}\right] \in \mathbb{R}^{m, n}
$$

- I will denote matrices with bold capital letters, and sometimes write $\mathbf{A}=[m, n]$ to indicate dimensions.
- The matrix-vector product is defined as a linear combination of the columns:

$$
\mathbf{b}=\mathbf{A} \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n} \in \mathbb{R}^{m} .
$$

- The image $\operatorname{im}(\mathbf{A})$ or range range (\mathbf{A}) of a matrix is the subspace of all linear combinations of its columns, i.e., the set of all \mathbf{b}^{\prime} s. It is also sometimes called the column space of the matrix.

Dimension

- The set of vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$ are linearly independent or form a basis for \mathbb{R}^{m} if $\mathbf{b}=\mathbf{A x}=\mathbf{0}$ implies that $\mathbf{x}=\mathbf{0}$.
- The dimension $r=\operatorname{dim} \mathcal{V}$ of a vector (sub)space \mathcal{V} is the number of elements in a basis. This is a property of \mathcal{V} itself and not of the basis, for example,

$$
\operatorname{dim} \mathbb{R}^{n}=n
$$

- Given a basis \mathbf{A} for a vector space \mathcal{V} of dimension n, every vector of $\mathbf{b} \in \mathcal{V}$ can be uniquely represented as the vector of coefficients \mathbf{x} in that particular basis,

$$
\mathbf{b}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

- A simple and common basis for \mathbb{R}^{n} is $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$, where \mathbf{e}_{k} has all components zero except for a single 1 in position k.
With this choice of basis the coefficients are simply the entries in the vector, $\mathbf{b} \equiv \mathbf{x}$.

Kernel Space

- The dimension of the column space of a matrix is called the rank of the matrix $\mathbf{A} \in \mathbb{R}^{m, n}$,

$$
r=\operatorname{rank} \mathbf{A} \leq \min (m, n) .
$$

- If $r=\min (m, n)$ then the matrix is of full rank.
- The nullspace null(\mathbf{A}) or $\operatorname{kernel} \operatorname{ker}(\mathbf{A})$ of a matrix \mathbf{A} is the subspace of vectors \mathbf{x} for which

$$
A x=0
$$

- The dimension of the nullspace is called the nullity of the matrix.
- For a basis \mathbf{A} the nullspace is $\operatorname{null}(\mathbf{A})=\{\mathbf{0}\}$ and the nullity is zero.

Orthogonal Spaces

- An inner-product space is a vector space together with an inner or dot product, which must satisfy some properties.
- The standard dot-product in \mathbb{R}^{n} is denoted with several different notations:

$$
\mathbf{x} \cdot \mathbf{y}=(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

- For \mathbb{C}^{n} we need to add complex conjugates (here \star denotes a complex conjugate transpose, or adjoint),

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\star} \mathbf{y}=\sum_{i=1}^{n} \bar{x}_{i} y_{i}
$$

- Two vectors \mathbf{x} and \mathbf{y} are orthogonal if $\mathbf{x} \cdot \mathbf{y}=0$.

Part I of Fundamental Theorem

- One of the most important theorems in linear algebra is that the sum of rank and nullity is equal to the number of columns: For $\mathbf{A} \in \mathbb{R}^{m, n}$

$$
\operatorname{rank} \mathbf{A}+\text { nullity } \mathbf{A}=n
$$

- In addition to the range and kernel spaces of a matrix, two more important vector subspaces for a given matrix \mathbf{A} are the:
- Row space or coimage of a matrix is the column (image) space of its transpose, im \mathbf{A}^{T}.
Its dimension is also equal to the the rank.
- Left nullspace or cokernel of a matrix is the nullspace or kernel of its transpose, $\operatorname{ker} \mathbf{A}^{T}$.

Part II of Fundamental Theorem

- The orthogonal complement \mathcal{V}^{\perp} or orthogonal subspace of a subspace \mathcal{V} is the set of all vectors that are orthogonal to every vector in \mathcal{V}.
- Let \mathcal{V} be the set of vectors in $x \in \mathbb{R}^{3}$ such that $x_{3}=0$. Then \mathcal{V}^{\perp} is the set of all vectors with $x_{1}=x_{2}=0$.
- Second fundamental theorem in linear algebra:

$$
\begin{aligned}
& \operatorname{im} \mathbf{A}^{T}=(\operatorname{ker} \mathbf{A})^{\perp} \\
& \operatorname{ker} \mathbf{A}^{T}=(\operatorname{im} \mathbf{A})^{\perp}
\end{aligned}
$$

Outline

(1) Vector Spaces
(2) Linear Transformations

(3) Norms and Conditioning

4) Conditioning of linear maps

Linear Transformation

- A function $L: \mathcal{V} \rightarrow \mathcal{W}$ mapping from a vector space \mathcal{V} to a vector space \mathcal{W} is a linear function or a linear transformation if

$$
L(\alpha \mathbf{v})=\alpha L(\mathbf{v}) \text { and } L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)
$$

- Any linear transformation L can be represented as a multiplication by a matrix L

$$
L(\mathbf{v})=\mathbf{L v} .
$$

- For the common bases of $\mathcal{V}=\mathbb{R}^{n}$ and $\mathcal{W}=\mathbb{R}^{m}$, the product $\mathbf{w}=\mathbf{L v}$ is simply the usual matix-vector product,

$$
w_{i}=\sum_{k=1}^{n} L_{i k} v_{k},
$$

which is simply the dot-product between the i-th row of the matrix and the vector \mathbf{v}.

Matrix algebra

$$
w_{i}=(\mathbf{L v})_{i}=\sum_{k=1}^{n} L_{i k} v_{k}
$$

- The composition of two linear transformations $\mathbf{A}=[m, p]$ and $\mathbf{B}=[p, n]$ is a matrix-matrix product $\mathbf{C}=\mathbf{A B}=[m, n]:$

$$
\begin{gathered}
\mathbf{z}=\mathbf{A}(\mathbf{B} \mathbf{x})=\mathbf{A} \mathbf{y}=(\mathbf{A B}) \mathbf{x} \\
z_{i}=\sum_{k=1}^{n} A_{i k} y_{k}=\sum_{k=1}^{p} A_{i k} \sum_{j=1}^{n} B_{k j} x_{j}=\sum_{j=1}^{n}\left(\sum_{k=1}^{p} A_{i k} B_{k j}\right) x_{j}=\sum_{j=1}^{n} C_{i j} x_{j} \\
C_{i j}=\sum_{k=1}^{p} A_{l k} B_{k j}
\end{gathered}
$$

- Matrix-matrix multiplication is not commutative, $\mathbf{A B} \neq \mathbf{B A}$ in general.

The Matrix Inverse

- A square matrix $\mathbf{A}=[n, n]$ is invertible or nonsingular if there exists a matrix inverse $\mathbf{A}^{-1}=\mathbf{B}=[n, n]$ such that:

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I},
$$

where \mathbf{I} is the identity matrix (ones along diagonal, all the rest zeros).

- The following statements are equivalent for $\mathbf{A} \in \mathbb{R}^{n, n}$:
- A is invertible.
- \mathbf{A} is full-rank, $\operatorname{rank} \mathbf{A}=n$.
- The columns and also the rows are linearly independent and form a basis for \mathbb{R}^{n}.
- The determinant is nonzero, $\operatorname{det} \mathbf{A} \neq 0$.
- Zero is not an eigenvalue of \mathbf{A}.

Matrix Algebra

- Matrix-vector multiplication is just a special case of matrix-matrix multiplication. Note $\mathbf{x}^{T} \mathbf{y}$ is a scalar (dot product).

$$
\begin{gathered}
\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C} \mathbf{A}+\mathbf{C B} \text { and } \mathbf{A B C}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C}) \\
\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A} \text { and }(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T} \\
\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \text { and }(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \text { and }\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}
\end{gathered}
$$

- Instead of matrix division, think of multiplication by an inverse:

$$
\mathbf{A B}=\mathbf{C} \quad \Rightarrow \quad\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{A}^{-1} \mathbf{C} \quad \Rightarrow \quad \begin{cases}\mathbf{B} & =\mathbf{A}^{-1} \mathbf{C} \\ \mathbf{A} & =\mathbf{C B}^{-1}\end{cases}
$$

Outline

(1) Vector Spaces
(2) Linear Transformations
(3) Norms and Conditioning

4) Conditioning of linear maps

Vector norms

- Norms are the abstraction for the notion of a length or magnitude.
- For a vector $\mathbf{x} \in \mathbb{R}^{n}$, the p-norm is

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

and special cases of interest are:
(1) The 1-norm (L^{1} norm or Manhattan distance), $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
(2) The 2 -norm (L^{2} norm, Euclidian distance),

$$
\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

(3) The ∞-norm (L^{∞} or maximum norm), $\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
(1) Note that all of these norms are inter-related in a finite-dimensional setting.

Matrix norms

- Matrix norm induced by a given vector norm:

$$
\|\mathbf{A}\|=\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \Rightarrow\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|
$$

- The last bound holds for matrices as well, $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$.
- Special cases of interest are:
(1) The 1-norm or column sum norm, $\|\mathbf{A}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
(2) The ∞-norm or row sum norm, $\|\mathbf{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$
(3) The 2-norm or spectral norm, $\|\mathbf{A}\|_{2}=\sigma_{1}$ (largest singular value)
(9) The Euclidian or Frobenius norm, $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}$ (note this is not an induced norm)

Outline

(1) Vector Spaces
(2) Linear Transformations
(3) Norms and Conditioning

4 Conditioning of linear maps

Conditioning

- Consider a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and perturb \mathbf{x} to the absolute condition number

$$
\operatorname{Cond}_{\mathbf{x}}(f)=\sup _{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{f}(\mathbf{x}+\delta \mathbf{x})-\mathbf{f}(\mathbf{x})\|}{\|\delta \mathbf{x}\|}
$$

where $\|\delta \mathbf{x}\| \ll\|\mathbf{x}\|$ is a small perturbation (assume $\mathbf{x} \neq \mathbf{0}$).

- This measures how sensitive the value of the function is to small errors in the input (e.g., roundoff or measurement).
- For differentiable scalar functions $f(x \in \mathbb{R}) \in \mathbb{R}$,

$$
\operatorname{Cond}_{x}(f)=\left|f^{\prime}(x)\right|
$$

- More commonly used is the relative condition number

$$
\operatorname{cond}_{\mathbf{x}}(f)=\sup _{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{f}(\mathbf{x}+\delta \mathbf{x})-\mathbf{f}(\mathbf{x})\| /\|\mathbf{f}(\mathbf{x})\|}{\|\delta \mathbf{x}\| /\|\mathbf{x}\|}
$$

which measures the maximum relative change in the output for a given small relative change in the input.

Conditioning number

- Consider a linear mapping $\mathbf{f}(\mathbf{x})=\mathbf{A x}$. What is the relative conditioning number?

$$
\begin{aligned}
\operatorname{cond}_{\mathbf{x}}(f) & =\sup _{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}(\mathbf{x}+\delta \mathbf{x})-\mathbf{A} \mathbf{x}\| /\|\mathbf{A} \mathbf{x}\|}{\|\delta \mathbf{x}\| /\|\mathbf{x}\|} \\
& =\frac{\|\mathbf{x}\|}{\|\mathbf{A x}\|} \sup _{\delta \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \delta \mathbf{x}\|}{\|\delta \mathbf{x}\|}= \\
& =\frac{\|\mathbf{x}\|}{\|\mathbf{A} x\|}\|\mathbf{A}\| \geq 1
\end{aligned}
$$

- To get an upper bound, consider an invertible square \mathbf{A},

$$
\operatorname{cond}_{\mathbf{x}}(f)=\frac{\left\|\mathbf{A}^{-1}(\mathbf{A} \mathbf{x})\right\|}{\|\mathbf{A} \mathbf{x}\|}\|\mathbf{A}\| \leq\left\|\mathbf{A}^{-1}\right\| \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{A} \mathbf{x}\|}\|\mathbf{A}\|
$$

which leads us to define a matrix condition number

$$
\kappa(\mathbf{A})=\left\|\mathbf{A}^{-1}\right\|\|\mathbf{A}\|>1
$$

