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Vector Spaces

Linear Spaces

A vector space V is a set of elements called vectors x ∈ V that may
be multiplied by a scalar c and added, e.g.,

z = αx + βy

I will denote scalars with lowercase letters and vectors with lowercase
bold letters.

Prominent examples of vector spaces are Rn (or more generally Cn),
but there are many others, for example, the set of polynomials in x .

A subspace V ′ ⊆ V of a vector space is a subset such that sums and
multiples of elements of V ′

remain in V ′
(i.e., it is closed).

An example is the set of vectors in x ∈ R3 such that x3 = 0.

A. Donev (Courant Institute) LA 2/2021 4 / 21



Vector Spaces

Image Space

Consider a set of n vectors a1, a2, · · · , an ∈ Rm and form a matrix by
putting these vectors as columns

A = [a1 | a2 | · · · | am] ∈ Rm,n.

I will denote matrices with bold capital letters, and sometimes write
A = [m, n] to indicate dimensions.

The matrix-vector product is defined as a linear combination of
the columns:

b = Ax = x1a1 + x2a2 + · · ·+ xnan ∈ Rm.

The image im(A) or range range(A) of a matrix is the subspace of
all linear combinations of its columns, i.e., the set of all b′s.
It is also sometimes called the column space of the matrix.
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Vector Spaces

Dimension

The set of vectors a1, a2, · · · , an are linearly independent or form a
basis for Rm if b = Ax = 0 implies that x = 0.

The dimension r = dimV of a vector (sub)space V is the number of
elements in a basis. This is a property of V itself and not of the basis,
for example,

dimRn = n

Given a basis A for a vector space V of dimension n, every vector of
b ∈ V can be uniquely represented as the vector of coefficients x in
that particular basis,

b = x1a1 + x2a2 + · · ·+ xnan.

A simple and common basis for Rn is {e1, . . . , en}, where ek has all
components zero except for a single 1 in position k.
With this choice of basis the coefficients are simply the entries in the
vector, b ≡ x.
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Vector Spaces

Kernel Space

The dimension of the column space of a matrix is called the rank of
the matrix A ∈ Rm,n,

r = rankA ≤ min(m, n).

If r = min(m, n) then the matrix is of full rank.

The nullspace null(A) or kernel ker(A) of a matrix A is the subspace
of vectors x for which

Ax = 0.

The dimension of the nullspace is called the nullity of the matrix.

For a basis A the nullspace is null(A) = {0} and the nullity is zero.
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Vector Spaces

Orthogonal Spaces

An inner-product space is a vector space together with an inner or
dot product, which must satisfy some properties.

The standard dot-product in Rn is denoted with several different
notations:

x · y = (x, y) = 〈x, y〉 = xTy =
n∑

i=1

xiyi .

For Cn we need to add complex conjugates (here ? denotes a complex
conjugate transpose, or adjoint),

x · y = x?y =
n∑

i=1

x̄iyi .

Two vectors x and y are orthogonal if x · y = 0.
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Vector Spaces

Part I of Fundamental Theorem

One of the most important theorems in linear algebra is that the sum
of rank and nullity is equal to the number of columns: For A ∈ Rm,n

rankA + nullityA = n.

In addition to the range and kernel spaces of a matrix, two more
important vector subspaces for a given matrix A are the:

Row space or coimage of a matrix is the column (image) space of its
transpose, imAT .
Its dimension is also equal to the the rank.
Left nullspace or cokernel of a matrix is the nullspace or kernel of its
transpose, kerAT .
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Vector Spaces

Part II of Fundamental Theorem

The orthogonal complement V⊥ or orthogonal subspace of a
subspace V is the set of all vectors that are orthogonal to every vector
in V.

Let V be the set of vectors in x ∈ R3 such that x3 = 0. Then V⊥ is
the set of all vectors with x1 = x2 = 0.

Second fundamental theorem in linear algebra:

imAT = (kerA)⊥

kerAT = (imA)⊥
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Linear Transformations

Linear Transformation

A function L : V → W mapping from a vector space V to a vector
space W is a linear function or a linear transformation if

L(αv) = αL(v) and L(v1 + v2) = L(v1) + L(v2).

Any linear transformation L can be represented as a multiplication by
a matrix L

L(v) = Lv.

For the common bases of V = Rn and W = Rm, the product w = Lv
is simply the usual matix-vector product,

wi =
n∑

k=1

Likvk ,

which is simply the dot-product between the i-th row of the matrix
and the vector v.

A. Donev (Courant Institute) LA 2/2021 12 / 21



Linear Transformations

Matrix algebra

wi = (Lv)i =
n∑

k=1

Likvk

The composition of two linear transformations A = [m, p] and
B = [p, n] is a matrix-matrix product C = AB = [m, n]:

z = A (Bx) = Ay = (AB) x

zi =
n∑

k=1

Aikyk =

p∑
k=1

Aik

n∑
j=1

Bkjxj =
n∑

j=1

(
p∑

k=1

AikBkj

)
xj =

n∑
j=1

Cijxj

Cij =

p∑
k=1

AIkBkj

Matrix-matrix multiplication is not commutative, AB 6= BA in
general.
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Linear Transformations

The Matrix Inverse

A square matrix A = [n, n] is invertible or nonsingular if there exists
a matrix inverse A−1 = B = [n, n] such that:

AB = BA = I,

where I is the identity matrix (ones along diagonal, all the rest zeros).

The following statements are equivalent for A ∈ Rn,n:

A is invertible.
A is full-rank, rankA = n.
The columns and also the rows are linearly independent and form a
basis for Rn.
The determinant is nonzero, detA 6= 0.
Zero is not an eigenvalue of A.
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Linear Transformations

Matrix Algebra

Matrix-vector multiplication is just a special case of matrix-matrix
multiplication. Note xTy is a scalar (dot product).

C (A + B) = CA + CB and ABC = (AB)C = A (BC)

(
AT
)T

= A and (AB)T = BTAT

(
A−1

)−1
= A and (AB)−1 = B−1A−1 and

(
AT
)−1

=
(
A−1

)T
Instead of matrix division, think of multiplication by an inverse:

AB = C ⇒
(
A−1A

)
B = A−1C ⇒

{
B = A−1C

A = CB−1
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Norms and Conditioning

Vector norms

Norms are the abstraction for the notion of a length or magnitude.

For a vector x ∈ Rn, the p-norm is

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

and special cases of interest are:

1 The 1-norm (L1 norm or Manhattan distance), ‖x‖1 =
∑n

i=1 |xi |
2 The 2-norm (L2 norm, Euclidian distance),

‖x‖2 =
√
x · x =

√∑n
i=1 |xi |

2

3 The ∞-norm (L∞ or maximum norm), ‖x‖∞ = max1≤i≤n |xi |

1 Note that all of these norms are inter-related in a finite-dimensional
setting.
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Norms and Conditioning

Matrix norms

Matrix norm induced by a given vector norm:

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

⇒ ‖Ax‖ ≤ ‖A‖ ‖x‖

The last bound holds for matrices as well, ‖AB‖ ≤ ‖A‖ ‖B‖.
Special cases of interest are:

1 The 1-norm or column sum norm, ‖A‖1 = maxj
∑n

i=1 |aij |
2 The ∞-norm or row sum norm, ‖A‖∞ = maxi

∑n
j=1 |aij |

3 The 2-norm or spectral norm, ‖A‖2 = σ1 (largest singular value)

4 The Euclidian or Frobenius norm, ‖A‖F =
√∑

i,j |aij |
2

(note this is not an induced norm)
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Conditioning of linear maps

Conditioning

Consider a function f : Rn → Rm, and perturb x to the absolute
condition number

Condx (f ) = sup
δx6=0

‖f (x + δx)− f (x)‖
‖δx‖

where ‖δx‖ � ‖x‖ is a small perturbation (assume x 6= 0).
This measures how sensitive the value of the function is to small
errors in the input (e.g., roundoff or measurement).
For differentiable scalar functions f (x ∈ R) ∈ R,

Condx (f ) =
∣∣f ′ (x)

∣∣ .
More commonly used is the relative condition number

condx (f ) = sup
δx6=0

‖f (x + δx)− f (x)‖ / ‖f (x)‖
‖δx‖ / ‖x‖

which measures the maximum relative change in the output for a
given small relative change in the input.
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Conditioning of linear maps

Conditioning number

Consider a linear mapping f (x) = Ax. What is the relative
conditioning number?

condx (f ) = sup
δx6=0

‖A (x + δx)− Ax‖ / ‖Ax‖
‖δx‖ / ‖x‖

=
‖x‖
‖Ax‖

sup
δx6=0

‖Aδx‖
‖δx‖

=

=
‖x‖
‖Ax‖

‖A‖ ≥ 1.

To get an upper bound, consider an invertible square A,

condx (f ) =

∥∥A−1 (Ax)
∥∥

‖Ax‖
‖A‖ ≤

∥∥A−1∥∥ ‖Ax‖
‖Ax‖

‖A‖

which leads us to define a matrix condition number

κ (A) =
∥∥A−1∥∥ ‖A‖ > 1.
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