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Gauss elimination and LU factorization

Matrices and linear systems

It is said that 70% or more of applied mathematics research involves
solving systems of m linear equations for n unknowns:

n∑
j=1

aijxj = bi , i = 1, · · · ,m.

Linear systems arise directly from discrete models, e.g., traffic flow
in a city. Or, they may come through representing or more abstract
linear operators in some finite basis (representation).
Common abstraction:

Ax = b

Special case: Square invertible matrices, m = n, det A 6= 0:

x = A−1b.

The goal: Calculate solution x given data A,b in the most
numerically stable and also efficient way.
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Gauss elimination and LU factorization

GEM: Eliminating x1
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Gauss elimination and LU factorization

GEM: Eliminating x2
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Gauss elimination and LU factorization

GEM: Backward substitution
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Gauss elimination and LU factorization

GEM as an LU factorization tool

We have actually factorized A as

A = LU,

L is unit lower triangular (lii = 1 on diagonal), and U is upper
triangular.

GEM is thus essentially the same as the LU factorization method.
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Gauss elimination and LU factorization

GEM in MATLAB

% Sample MATLAB code ( f o r l e a r n i n g p u r p o s e s on ly , not r e a l computing ! ) :
f u n c t i o n A = MyLU(A)

% LU f a c t o r i z a t i o n in−p l a c e ( o v e r w r i t e A)
[ n ,m]= s i z e (A ) ;
i f ( n ˜= m) ; e r r o r ( ’ M a t r i x not square ’ ) ; end
f o r k =1:(n−1) % For v a r i a b l e x ( k )

% C a l c u l a t e m u l t i p l i e r s i n column k :
A( ( k +1):n , k ) = A( ( k +1):n , k ) / A( k , k ) ;
% Note : P i v o t e l em en t A( k , k ) assumed nonzero !
f o r j =(k +1): n

% E l i m i n a t e v a r i a b l e x ( k ) :
A( ( k +1):n , j ) = A( ( k +1):n , j ) − . . .

A( ( k +1):n , k ) ∗ A( k , j ) ;
end

end
end
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Gauss elimination and LU factorization

Pivoting

A. Donev (Courant Institute) LU 2/2021 11 / 38



Gauss elimination and LU factorization

Pivoting during LU factorization

Partial (row) pivoting permutes the rows (equations) of A in order
to ensure sufficiently large pivots and thus numerical stability:

PA = LU

Here P is a permutation matrix, meaning a matrix obtained by
permuting rows and/or columns of the identity matrix.

Complete pivoting also permutes columns, PAQ = LU.
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Gauss elimination and LU factorization

Gauss Elimination Method (GEM)

GEM is a general method for dense matrices and is commonly used.

Implementing GEM efficiently and stably is difficult and we will not
discuss it here, since others have done it for you!

The LAPACK public-domain library is the main repository for
excellent implementations of dense linear solvers.

MATLAB uses a highly-optimized variant of GEM by default, mostly
based on LAPACK.

MATLAB does have specialized solvers for special cases of matrices,
so always look at the help pages!
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Gauss elimination and LU factorization

Solving linear systems

Once an LU factorization is available, solving a linear system is simple:

Ax = LUx = L (Ux) = Ly = b

so solve for y using forward substitution.
This was implicitly done in the example above by overwriting b to
become y during the factorization.

Then, solve for x using backward substitution

Ux = y.

If row pivoting is necessary, the same applies but L or U may be
permuted upper/lower triangular matrices,

A = L̃U =
(
PTL

)
U.
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Gauss elimination and LU factorization

In MATLAB

In MATLAB, the backslash operator (see help on mldivide)

x = A\b ≈ A−1b,

solves the linear system Ax = b using the LAPACK library.
Never use matrix inverse to do this, even if written as such on paper.

Doing x = A\b is equivalent to performing an LU factorization and
doing two triangular solves (backward and forward substitution):

[L̃,U] = lu(A)

y = L̃\b
x = U\y

This is a carefully implemented backward stable pivoted LU
factorization, meaning that the returned solution is as accurate as the
conditioning number allows.
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Gauss elimination and LU factorization

GEM Matlab example (1)

>> A = [ 1 2 3 ; 4 5 6 ; 7 8 0 ] ;
>> b=[2 1 −1] ’ ;

>> x=Aˆ(−1)∗b ; x ’ % Don ’ t do t h i s !
ans = −2.5556 2 .1111 0 .1111

>> x = A\b ; x ’ % Do t h i s i n s t e a d
ans = −2.5556 2 .1111 0 .1111

>> l i n s o l v e (A, b ) ’ % Even more c o n t r o l
ans = −2.5556 2 .1111 0 .1111
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Gauss elimination and LU factorization

GEM Matlab example (2)

>> [ L ,U] = l u (A) % Even b e t t e r i f r e s o l v i n g

L = 0.1429 1 .0000 0
0 .5714 0 .5000 1 .0000
1 .0000 0 0

U = 7.0000 8 .0000 0
0 0 .8571 3 .0000
0 0 4 .5000

>> norm ( L∗U−A, i n f )
ans = 0

>> y = L\b ;
>> x = U\y ; x ’
ans = −2.5556 2 .1111 0 .1111
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Gauss elimination and LU factorization

Backwards Stability

Even though we cannot get x correctly for ill-conditioned linear
systems, we can still get an (not the one!) x that is a solution of the
equation to almost machine precision.

This sort of backward stability means that there is a problem nearby
the original problem such that the answer we compute x̂ is the
solution of that “perturbed” problem,

(A + δA) x̂ = b + δb.

A backwards stable method gives a residual r = Ax− b that is zero
to within the rounding unit u ≈ 10−16,

‖Ax− b‖
‖b‖

∼ ‖Ax− b‖
‖Ax‖

∼ u,

Observe that the conditioning number of the matrix does not enter
here, it can be large!
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Gauss elimination and LU factorization

Backwards Stability contd.

Gaussian elimination with partial pivoting is almost always backwards
stable in practice, but one can always check the residual after
computing the answer (always good practice to confirm you solved
the problem you thought you solved!)

Specifically, if we compute the LU factorization we are guaranteed
that

A + δA = LU where
‖δA‖
‖A‖

≤ Cu

where C is some modest constant that depends polynomially on the
number of unknowns (not exponentially).

Complete pivoting is rarely used in practice because it is expensive,
even though it will give better guarantees.

A. Donev (Courant Institute) LU 2/2021 19 / 38



Gauss elimination and LU factorization

Cost estimates for GEM

For forward or backward substitution, at step k there are ∼ (n − k)
multiplications and subtractions, plus a few divisions.
The total over all n steps is

n∑
k=1

(n − k) =
n(n − 1)

2
≈ n2

2

subtractions and multiplications, giving a total of O(n2)
floating-point operations (FLOPs).

The LU factorization itself costs a lot more, O(n3),

FLOPS ≈ 2n3

3
,

and the triangular solves are negligible for large systems.

When many linear systems need to be solved with the same A the
factorization can be reused.
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Conditioning of linear systems

Stability analysis

Perturbations on right hand side (rhs) only:

A (x + δx) = b + δb ⇒ b + Aδx = b + δb

δx = A−1δb ⇒ ‖δx‖ ≤
∥∥A−1

∥∥ ‖δb‖

Using the bounds

‖b‖ ≤ ‖A‖ ‖x‖ ⇒ ‖x‖ ≥ ‖b‖ / ‖A‖

the relative error in the solution can be bounded by

‖δx‖
‖x‖

≤
∥∥A−1

∥∥ ‖δb‖
‖x‖

≤
∥∥A−1

∥∥ ‖δb‖
‖b‖ / ‖A‖

= κ(A)
‖δb‖
‖b‖

where the conditioning number κ(A) depends on the matrix norm used:

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1.
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Conditioning of linear systems

Conditioning Number

The full derivation, not given here, estimates the uncertainty or
perturbation in the solution:

‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖
‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.

The worst-case conditioning of the linear system is determined by
κ(A).

Best possible error with rounding unit u ≈ 10−16:

‖δx‖∞
‖x‖∞

. 2uκ(A),

Solving an ill-conditioned system, κ(A)� 1 (e.g., κ = 1015!) ,
should only be done if something special is known.

The conditioning number can only be estimated in practice since
A−1 is not available (see MATLAB’s rcond function).
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Conditioning of linear systems

Matrix Rescaling and Reordering

Pivoting is not always sufficient to ensure lack of roundoff problems.
In particular, large variations among the entries in A should be
avoided.

This can usually be remedied by changing the physical units for x and
b to be the natural units x0 and b0.

Rescaling the unknowns and the equations is generally a good idea
even if not necessary:

x = Dx x̃ = Diag {x0} x̃ and b = Dbb̃ = Diag {b0} b̃.

Ax = ADx x̃ = Dbb̃ ⇒
(
D−1b ADx

)
x̃ = b̃

The rescaled matrix Ã = D−1b ADx should have a better
conditioning.

Also note that reordering the variables from most important to
least important may also help.
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Cholesky Factorization

Positive-Definite Matrices

A real symmetric matrix A is positive definite iff (if and only if):

1 All of its eigenvalues are real (follows from symmetry) and positive.
2 ∀x 6= 0, xTAx > 0, i.e., the quadratic form defined by the matrix A is

convex.
3 There exists a unique lower triangular L, Lii > 0,

A = LLT ,

termed the Cholesky factorization of A (symmetric LU factorization).

1 For Hermitian complex matrices just replace transposes with adjoints
(conjugate transpose), e.g., AT → A? (or AH in the book).
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Cholesky Factorization

Cholesky Factorization

The MATLAB built in function

R = chol(A)

gives the Cholesky factorization and is a good way to test for
positive-definiteness.

The cost of a Cholesky factorization is about half the cost of LU
factorization, n3/3 FLOPS.

Solving linear systems is as for LU factorization, replacing U with LT .

For Hermitian/symmetric matrices with positive diagonals MATLAB
tries a Cholesky factorization first, before resorting to LU
factorization with pivoting.
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Cholesky Factorization

Special Matrices in MATLAB

MATLAB recognizes (i.e., tests for) some special matrices
automatically: banded, permuted lower/upper triangular, symmetric,
Hessenberg, but not sparse.

In MATLAB one may specify a matrix B instead of a single
right-hand side vector b.

The MATLAB function

X = linsolve(A,B, opts)

allows one to specify certain properties that speed up the solution
(triangular, upper Hessenberg, symmetric, positive definite, none),
and also estimates the condition number along the way.

Use linsolve instead of backslash if you know (for sure!) something
about your matrix.
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Overdetermined Linear Systems

Non-Square Matrices

In the case of over-determined (more equations than unknowns) or
under-determined (more unknowns than equations), the solution to
linear systems in general becomes non-unique.

One must first define what is meant by a solution, and the common
definition is to use a least-squares formulation:

x? = arg min
x∈Rn
‖Ax− b‖ = arg min

x∈Rn
Φ(x)

where the choice of the L2 norm leads to:

Φ(x) = (Ax− b)T (Ax− b) .

Over-determined systems, m > n, can be thought of as fitting a
linear model (linear regression):
The unknowns x are the coefficients in the fit, the input data is in A
(one column per measurement), and the output data (observables)
are in b.
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Overdetermined Linear Systems

Normal Equations

It can be shown that the least-squares solution satisfies:

∇Φ(x) = AT [2 (Ax− b)] = 0 (critical point)

This gives the square linear system of normal equations(
ATA

)
x? = ATb.

If A is of full rank, rank (A) = n, it can be shown that ATA is
positive definite, and Cholesky factorization can be used to solve the
normal equations.

Multiplying AT (n ×m) and A (m × n) takes n2 dot-products of
length m, so O(mn2) operations
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Overdetermined Linear Systems

Problems with the normal equations

(
ATA

)
x? = ATb.

The conditioning number of the normal equations is

κ
(
ATA

)
= [κ(A)]2

Furthermore, roundoff can cause ATA to no longer appear as
positive-definite and the Cholesky factorization will fail.

If the normal equations are ill-conditioned, another approach is
needed.
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Overdetermined Linear Systems

The QR factorization

For nonsquare or ill-conditioned matrices of full-rank r = n ≤ m, the
LU factorization can be replaced by the QR factorization:

A =QR

[m × n] =[m × n][n × n]

where Q has orthogonal columns, QTQ = In, and R is a
non-singular upper triangular matrix.

Observe that orthogonal / unitary matrices are well-conditioned
(κ2 = 1), so the QR factorization is numerically better (but also more
expensive!) than the LU factorization.

For matrices not of full rank there are modified QR factorizations
but the SVD decomposition is better (next class).

In MATLAB, the QR factorization can be computed using qr (with
column pivoting).
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Overdetermined Linear Systems

Solving Linear Systems via QR factorization

(
ATA

)
x? = ATb where A = QR

Observe that R is the Cholesky factor of the matrix in the normal
equations:

ATA = RT
(
QTQ

)
R = RTR

(
RTR

)
x? =

(
RTQT

)
b ⇒ x? = R−1

(
QTb

)
which amounts to solving a triangular system with matrix R.

This calculation turns out to be much more numerically stable
against roundoff than forming the normal equations (and has similar
cost).
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Overdetermined Linear Systems

Computing the QR Factorization

The QR factorization is closely-related to the orthogonalization of a
set of n vectors (columns) {a1, a2, . . . , an} in Rm, which is a common
problem in numerical computing.

Classical approach is the Gram-Schmidt method: To make a vector
b orthogonal to a do:

b̃ = b− (b · a)
a

(a · a)

Repeat this in sequence: Start with ã1 = a1, then make ã2 orthogonal
to ã1 = a1, then make ã3 orthogonal to span (ã1, ã2) = span (a1, a2):

ã1 = a1

ã2 = a2 − (a2 · a1)
a1

(a1 · a1)

ã3 = a3 − (a3 · a1)
a1

(a1 · a1)
− (a3 · a2)

a2

(a2 · a2)
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Overdetermined Linear Systems

Gram-Schmidt Orthogonalization

More efficient formula (standard Gram-Schmidt):

ãk+1 = ak+1 −
k∑

j=1

(
ak+1 · qj

)
qj , qk+1 =

ãk+1

‖ãk+1‖
,

with cost ≈ 2mn2 FLOPS but is not numerically stable against
roundoff errors (loss of orthogonality).

In the standard method we make each vector orthogonal to all
previous vectors. A numerically stable alternative is the modified
Gram-Schmidt, in which we take each vector and modify all
following vectors (not previous ones) to be orthogonal to it (so the
sum above becomes

∑m
j=k+1).

As we saw in previous lecture, a small rearrangement of
mathematically-equivalent approaches can produce a much more
robust numerical method.
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Conclusions

Conclusions/Summary

The conditioning of a linear system Ax = b is determined by the
condition number

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1

Gauss elimination can be used to solve general square linear systems
and also produces a factorization A = LU.

Partial pivoting is often necessary to ensure numerical stability during
GEM and leads to PA = LU or A = L̃U.

For symmetric positive definite matrices the Cholesky factorization
A = LLT is preferred and does not require pivoting.

The QR factorization is a numerically-stable method for solving
full-rank non-square systems.
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