Worksheet 2 (Feb 24th, 2021)

Newton's method in higher dimensions

Let $h: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ defined by $\boldsymbol{h}(x, y)=(f(x, y), g(x, y))^{T}$, where

$$
f(x, y)=y-\frac{\sqrt{3}}{2} x^{2}, \quad g(x, y)=2 x^{2}+8 y^{2}-8 .
$$

We want to find the roots of \boldsymbol{h}, i.e., all pairs $(x, y) \in \mathbb{R}^{2}$ such that $\boldsymbol{h}(x, y)=(0,0)^{T}$.

1. Sketch or plot the curves/sets $\mathcal{F}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}$ and $\mathcal{G}=\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)=\right.$ $0\}$, i.e., the set of all zeros of f and g. What geometrical shapes do these sets have?
2. Calculate analytically the roots of \boldsymbol{h}, i.e., the intersection of the sets \mathcal{F} and \mathcal{G}.
3. Write down a first-order Taylor series expansion for \boldsymbol{h} (i.e., for both f and g) around a given point $\left(x_{0}, y_{0}\right)$. Then rewrite it in the matrix-vector form

$$
\boldsymbol{h}(x, y)=\boldsymbol{h}\left(x_{0}, y_{0}\right)+\boldsymbol{J}(x, y)\binom{x-x_{0}}{y-y_{0}}
$$

and report the Jacobian matrix $\boldsymbol{J}(x, y)$.
4. Recall that Newton's method computes a new guess by using the first-order Taylor series to approximate the function and setting that to zero to find the next solution. Use this to write down a linear system of equations to get the next guess $\left(x_{k+1}, y_{k+1}\right)^{T}$ from the current guess $\left(x_{k}, y_{k}\right)$.
5. Implement Newton's method for $\boldsymbol{h}(x, y)=(0,0)^{T}$ and use it to calculate the first 5 iterates for the starting values $\left(x_{0}, y_{0}\right)=(2,3)$ and $\left(x_{0}, y_{0}\right)=(-1.5,2)$, and compare to the solution from part 2. Plot these iterates in the $x y$-plane together with the curves \mathcal{F} and \mathcal{G}, and explain how you solved the linear system of equations from part 4.

As time permits or work on your own to really prepare for future graduate work in mathematics/computing:

- Use the previous question to write a general formula for the Jacobian matrix of a vector-valued function of many variables, $\boldsymbol{f}\left(\boldsymbol{x} \in \mathbb{R}^{n}\right) \in \mathbb{R}^{m}$. When $m=1$ the Jacobian is also called the gradient of f.
- Write down the linear system from part 4 for a general square nonlinear system of equations $\boldsymbol{f}(\boldsymbol{x})=0$ where $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- [This part requires the pre-recorded lecture from this week, so come back to it later:] Write the code for part 5 above so that it works in any dimension, that is, write a function that takes in as input a function $\boldsymbol{f}(\boldsymbol{x})$ and a function to compute its Jacobian matrix $\boldsymbol{J}(\boldsymbol{x})$ and an initial guess, and then does Newton's method from there. Try it for the specific two-dimensional problem.

