Worksheet 5 (March 31st, 2021)

1 Pseudo-inverse for ill-conditioned systems

We will revisit here square linear systems $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. A classic example of a very ill-conditioned $n \times n$ matrix \boldsymbol{A} is the Hilbert matrix, defined by

$$
a_{i j}=\frac{1}{i+j-1} .
$$

Note: This problem is not about the Hilbert matrix per se, but about ill-conditioned matrices in general, so do not focus on this specific matrix (one reason we are using it is that we will encounter it again in a later homework on polynomial approximation). We will later talk about the Vandermonde matrix (related to polynomial interpolation) which is another example of an ill-conditioned matrix that you could use equally well.

1.1 Conditioning numbers

Form the Hilbert matrix in MATLAB and compute the conditioning number $\kappa_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}$ for increasing size of the matrix $n=10,12,14,15,16$ using MATLAB's cond function (which by default uses the L_{2} norm), and compare to the built-in function rcond, which estimates the inverse of the conditioning number in the L_{1} norm in a rapid but approximate way. For what n does the Hilbert matrix become too ill-conditioned for double precision floating-point arithmetic?

From now on set $n=15$.

1.2 Solving ill-conditioned systems

Compute a right-hand side (rhs) vector $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}$ so that the exact solution is $\boldsymbol{x}=[1,1, \ldots, 1]$ (all unit entries). Solve the linear system using MATLAB's built-in solver and report the error δx in the approximate solution $\hat{\boldsymbol{x}}$ (for example, in the Euclidian norm, $\delta x=\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|_{2}$). How many digits of accuracy do you get in the solution \boldsymbol{x} ? Do your results conform to the theoretical expectation discussed in class?

Also compute and report the relative norm of the residual $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\| /\|\boldsymbol{b}\|$ and comment on your observations.
Note: A method is called backward stable if it computes the exact solution to a nearby problem, i.e., if the residual is small.

1.3 Solving systems using the SVD

For this section start by using the built-in function pinv if you cannot quickly write your own version, and then come back at the end to writing your own pseudo inverse function (validate it against the built-in function). However, it will be crucial to read the documentation pinv to set properly the "tolerance" parameter (see below)!
Compute the SVD decomposition of \boldsymbol{A}. Look at the singular values of \boldsymbol{A} and compute the conditioning number of \boldsymbol{A} based on this [Hint: The MATLAB function diag can be used to extract the diagonal of a matrix or to construct a diagonal matrix].
Construct the matrix pseudo-inverse \boldsymbol{A}^{\dagger} from the SVD or using pinv. Use the pseudo-inverse to compute the solution $\hat{\boldsymbol{x}}=\boldsymbol{A}^{\dagger} \boldsymbol{b}$, and see if this is any more accurate than the previous direct solution.

1.3.1 Regularized Pseudo-Inverse

For a given relative tolerance $\varepsilon \ll 1$, a modified or regularized pseudo-inverse $\hat{\boldsymbol{A}}^{\dagger}$ is obtained by first setting to zero all singular values that are smaller than $\varepsilon \sigma_{1}$, where σ_{1} is the largest singular value. This can be obtained in MATLAB using the built-in function pinv as $\hat{\boldsymbol{A}}^{\dagger}=\operatorname{pinv}\left(A, \varepsilon \sigma_{1}\right)$.

For several logarithmically-spaced tolerances (for example, $\varepsilon=10^{-i}$ for $i=1,2, \ldots, 16$), compute the modified pseudo-inverse and then a solution $\hat{\boldsymbol{x}}=\hat{\boldsymbol{A}}^{\dagger} \boldsymbol{b}$. Plot the relative error in the modified solution versus the tolerance on a log-log scale. You should see a clear minimum error for some $\varepsilon=\tilde{\varepsilon}$. Report this optimal $\tilde{\varepsilon}$ and the smallest error that you can get.

