
Numerical Analysis Section 1, Spring 2021, A. Donev (Courant)

Worksheet 5 (March 31st, 2021)

1 Pseudo-inverse for ill-conditioned systems

We will revisit here square linear systems Ax = b. A classic example of a very ill-conditioned n × n
matrix A is the Hilbert matrix, defined by

aij =
1

i+ j − 1
.

Note: This problem is not about the Hilbert matrix per se, but about ill-conditioned matrices in general,
so do not focus on this specific matrix (one reason we are using it is that we will encounter it again
in a later homework on polynomial approximation). We will later talk about the Vandermonde matrix
(related to polynomial interpolation) which is another example of an ill-conditioned matrix that you
could use equally well.

1.1 Conditioning numbers

Form the Hilbert matrix in MATLAB and compute the conditioning number κ2(A) = ‖A‖2 ‖A−1‖2 for
increasing size of the matrix n = 10, 12, 14, 15, 16 using MATLAB’s cond function (which by default
uses the L2 norm), and compare to the built-in function rcond, which estimates the inverse of the
conditioning number in the L1 norm in a rapid but approximate way. For what n does the Hilbert
matrix become too ill-conditioned for double precision floating-point arithmetic?

From now on set n = 15.

1.2 Solving ill-conditioned systems

Compute a right-hand side (rhs) vector b = Ax so that the exact solution is x = [1, 1, . . . , 1] (all
unit entries). Solve the linear system using MATLAB’s built-in solver and report the error δx in the
approximate solution x̂ (for example, in the Euclidian norm, δx = ‖x− x̂‖2). How many digits of
accuracy do you get in the solution x? Do your results conform to the theoretical expectation discussed
in class?

Also compute and report the relative norm of the residual ‖Ax− b‖ / ‖b‖ and comment on your
observations.
Note: A method is called backward stable if it computes the exact solution to a nearby problem, i.e.,
if the residual is small.

1 of 2



Numerical Analysis Section 1, Spring 2021, A. Donev (Courant)

1.3 Solving systems using the SVD

For this section start by using the built-in function pinv if you cannot quickly write your own version,
and then come back at the end to writing your own pseudo inverse function (validate it against the
built-in function). However, it will be crucial to read the documentation pinv to set properly the
“tolerance” parameter (see below)!

Compute the SVD decomposition of A. Look at the singular values of A and compute the conditioning
number of A based on this [Hint: The MATLAB function diag can be used to extract the diagonal of
a matrix or to construct a diagonal matrix ].

Construct the matrix pseudo-inverse A† from the SVD or using pinv. Use the pseudo-inverse to
compute the solution x̂ = A†b, and see if this is any more accurate than the previous direct solution.

1.3.1 Regularized Pseudo-Inverse

For a given relative tolerance ε � 1, a modified or regularized pseudo-inverse Â† is obtained by first
setting to zero all singular values that are smaller than εσ1, where σ1 is the largest singular value. This
can be obtained in MATLAB using the built-in function pinv as Â† = pinv(A, εσ1).

For several logarithmically-spaced tolerances (for example, ε = 10−i for i = 1, 2, . . . , 16), compute the
modified pseudo-inverse and then a solution x̂ = Â†b. Plot the relative error in the modified solution
versus the tolerance on a log-log scale. You should see a clear minimum error for some ε = ε̃. Report
this optimal ε̃ and the smallest error that you can get.

2 of 2


