Worksheet 5 (March 31st, 2021)

1 Pseudo-inverse for ill-conditioned systems

We will revisit here square linear systems Ax = b. A classic example of a very ill-conditioned $n \times n$ matrix A is the Hilbert matrix, defined by

$$a_{ij} = \frac{1}{i+j-1}.$$

Note: This problem is **not** about the Hilbert matrix per se, but about ill-conditioned matrices in general, so do not focus on this specific matrix (one reason we are using it is that we will encounter it again in a later homework on polynomial approximation). We will later talk about the Vandermonde matrix (related to polynomial interpolation) which is another example of an ill-conditioned matrix that you could use equally well.

1.1 Conditioning numbers

Form the Hilbert matrix in MATLAB and compute the conditioning number $\kappa_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$ for increasing size of the matrix n = 10, 12, 14, 15, 16 using MATLAB's *cond* function (which by default uses the L_2 norm), and compare to the built-in function *rcond*, which estimates the *inverse* of the conditioning number in the L_1 norm in a rapid but approximate way. For what n does the Hilbert matrix become too ill-conditioned for double precision floating-point arithmetic?

From now on set n = 15.

1.2 Solving ill-conditioned systems

Compute a right-hand side (rhs) vector $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x}$ so that the exact solution is $\boldsymbol{x} = [1, 1, ..., 1]$ (all unit entries). Solve the linear system using MATLAB's built-in solver and report the error $\delta \boldsymbol{x}$ in the approximate solution $\hat{\boldsymbol{x}}$ (for example, in the Euclidian norm, $\delta \boldsymbol{x} = \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|_2$). How many digits of accuracy do you get in the solution \boldsymbol{x} ? Do your results conform to the theoretical expectation discussed in class?

Also compute and report the relative norm of the residual $\|Ax - b\| / \|b\|$ and comment on your observations.

Note: A method is called *backward stable* if it computes the *exact* solution to a nearby problem, i.e., if the residual is small.

1.3 Solving systems using the SVD

For this section start by using the built-in function pinv if you cannot quickly write your own version, and then come back at the end to writing your own pseudo inverse function (validate it against the built-in function). However, it will be crucial to read the documentation pinv to set properly the "tolerance" parameter (see below)!

Compute the SVD decomposition of A. Look at the singular values of A and compute the conditioning number of A based on this [*Hint: The MATLAB function diag can be used to extract the diagonal of a matrix or to construct a diagonal matrix*].

Construct the matrix pseudo-inverse A^{\dagger} from the SVD or using *pinv*. Use the pseudo-inverse to compute the solution $\hat{x} = A^{\dagger}b$, and see if this is any more accurate than the previous direct solution.

1.3.1 Regularized Pseudo-Inverse

For a given relative tolerance $\varepsilon \ll 1$, a modified or regularized pseudo-inverse \hat{A}^{\dagger} is obtained by first setting to zero all singular values that are smaller than $\varepsilon \sigma_1$, where σ_1 is the largest singular value. This can be obtained in MATLAB using the built-in function pinv as $\hat{A}^{\dagger} = pinv(A, \varepsilon \sigma_1)$.

For several logarithmically-spaced tolerances (for example, $\varepsilon = 10^{-i}$ for i = 1, 2, ..., 16), compute the modified pseudo-inverse and then a solution $\hat{x} = \hat{A}^{\dagger} b$. Plot the relative error in the modified solution versus the tolerance on a log-log scale. You should see a clear minimum error for some $\varepsilon = \tilde{\varepsilon}$. Report this optimal $\tilde{\varepsilon}$ and the smallest error that you can get.