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1 [160 pts] Finite Difference Discretizations in 1D

In this homework you will consider constructing a finite difference method for solving the non-constant
coefficient diffusion equation

ut = (d(x)ux)x + f(x, t), (1)

on the domain 0 < x < 1 with (potentially inhomogeneous) Dirichlet BCs at x = 0 and Neumann BCs
at x = 1,

u(0, t) = γ(t)

ux (1, t) = g(t).

Here d(x) > 0 is a diffusion coefficient which can in principle depend on position; more generally, the
diffusion coefficient can also depend on time or even on u itself (leading to a nonlinear diffusion equation).

Discretize the right hand side of the PDE in space using a finite-difference discretization that is at least
second-order accurate (or at least try to achieve second-order accuracy), and write down the discretization
in the report and then justify the choices you made. Make sure to develop a method and a code that
can work for any d(x), γ(t) and g(t) that are given as input to the problem (e.g., in the form of function
handles in Matlab). Write down a discretization and develop code for a grid where the first and last point
on the grid are separated from the endpoints by h/2, where h is the grid spacing, that is, the first point is
at x = h/2 and the last point at 1− h/2. This is the “staggered grid” discretization we mentioned in class,
and would arise if a finite-volume method were used, but for the purposes of this homework (second-order
accuracy) it does not matter whether we think of the method as finite difference or finite volume.
The book by LeVeque uses a non-staggered grid, i.e., a grid where the first and last point are on the

boundary, and does not discuss BCs for parabolic. The best approach is to first discretize the parabolic PDE
into a linear system of ODEs, dU/dt = AU +F (t), and then use the same matrix to discretize the elliptic
PDE as −AU = F . For the staggered grid, follow the idea of introducing ghost cells/nodes (one for left
and one for right boundary) as described in class (and in the “second approach” in Section 2.12 in LeVeque)
for elliptic PDEs in order to discretize the operator (d(x)ux)x with the imposed boundary conditions. Write
down an equation for each ghost value that satisfies the BC to second order (the staggered grid actually
makes this easier than the collocated grid used in LeVeque!), then use that equation to eliminate the ghost
value (i.e., to “fill” the ghost cells/nodes with values obtained from values in the interior of domain, which
you can think of as extrapolating from the interior into the ghost region).

If you are unable to handle the boundary conditions, do as much of this assignment as you can by
replacing the domain with −1 ≤ x < 1 and putting homogeneous Dirichlet conditions on both ends with
a grid where the first point is at x = −1 and the last point is at x = 1 (this is trivial so everyone should
be able to do this properly); think about why this is equivalent to the case of a homogeneous Neumann BC
at x = 0 and homogeneous Dirichlet at x = 1 and report your explanation if you end up doing this.

1.1 [110 pts] Order of Accuracy

In order to test the order of accuracy of our method we will use the analytical manufactured solution

usol(x, t) = exp−π2t/4 cos
(πx

2

)
(2)
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to obtain the specific forms of the initial condition u(x, 0), the forcing function f(x, t) and the boundary
conditions h(t) and g(t), so that the solution is (2), for a given

d(x) = 2 + cos(πx).

Note: Observe that if you chose instead usol(x, t) = exp−π2t/4 sin (πx/2) then the boundary conditions
will become homogeneous. This is sometimes easier to get right first, so you may want to start from there
while debugging the code. Also observe that if d(x) = 1 is a constant, then f(x, t) = 0 so there is no forcing
term, which also simplifies things and may be worth trying out first as a debugging tool.

1.1.1 [50 pts] Elliptic PDE

The limit u(x, t → ∞) → v(x) of the parabolic PDE (1) is given by the solution of a corresponding elliptic
PDE. To make that elliptic PDE be simple but nontrivial, let’s add a constant-in-time forcing term on
the right hand side and consider

0 = (d(x)ux)x + f̃(x). (3)

Figure out what f̃(x) needs to be so that the solution of this PDE is usol (x, t = 0).
[20 pts] First, confirm that your discretization of the operator (d(x)ux)x is second-order accurate in

space. This is always the first step in debugging codes involving solvers: test the forward operator before
constructing the inverse operator! To do this, there are two options, namely, when computing the error
(norm of the error) we can include the two grid values right next to the boundaries, or exclude them (since
those boundary values are different from the ones in the interior). In the first option, you should include
also the cells/nodes right next to the boundaries, and fill the ghost cells/nodes with values computed from
the exact solution (not one obtained by extrapolating from the interior as you do in the actual numerical
method). You should see clear 2nd order convergence in all norms for all grid values; do this test first to
validate your code. In the second option, fill the ghost values by extrapolation from the interior, but then
exclude the cells right next to the boundary when computing the error (norm). At those two points near
the boundaries, we are enforcing the boundary conditions to second order but we are not enforcing the
PDE (you cannot both enforce the PDE and the boundary condition at the boundary because there will be
more unknowns than there are equations). See the section titled “Second approach” in 2.12 in LeVeque to
understand this. You should see clear 2nd order convergence of the error at all interior cells/nodes. Only
continue to the next parts if your discretization passes this 2nd order validation tests!

[30 pts] Now solve the elliptic PDE (3) using your spatial discretizations. Make sure to explain how you
solved the linear system and how expensive your method is in terms of the number of grid intervals N = 1/h.
Compute and report the local truncation error of your scheme and the order of accuracy, including also
the values next to the boundary pointsies (don’t be alarmed if it seems to not be second-order at the
boundary!). Find numerically the order of accuracy of the global error for your method; now you should
include all points including those near the boundary when computing the error and its norm.

1.1.2 [60 pts] Parabolic PDE

[30 pts] Now solve the parabolic PDE up to time T = 1/4. Write your code so that it is efficient, reusing
quantities instead of recomputing them, and reusing as much of the code between different runs/methods.
Use one explicit and one implicit method to integrate the ODEs in time, and report what method you
chose. For the implicit method, write down what linear system(s) you needed to solve, and how you solved
them. For each method, estimate the stability limit on the time step size, if any. Confirm numerically for at
least two different grid sizes that this estimate is a good one.
[Hint: A common mistake is to choose the time step size τ such that T/τ is not an exact integer. Another
common mistake is to evaluate the rhs f(x, t) at the wrong point(s) in time.]

Note that if your parabolic discretization is based on dU/dt = AU + F (t), and the elliptic PDE is
disretized as −AU = F , you will have already confirmed that AU is second order in space in part 1.1.1,
so you do not have to repeat it here; if you did not get clear 2nd order accuracy in 1.1.1 you should not
proceed to this part.

[30 pts] Compute the solution using several grid sizes that are powers of two, and explain how and why
you chose the specific value of the time step size for each grid size. Confirm the overall spatio-temporal order
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of accuracy of your method. Plot the error in the solution (as a function of x) and explain how large the
grid size needs to be in order for you to be in the asymptotic error regime. Comment on whether you think
different function norms of the error will behave differently (and of course test your hypothesis numerically).
You may encounter issues, for example, you may not observe 2nd order. This is a sign of a problem,

and it is part of the homework exercise to figure out the problem on your own. Here are some hints on
how to go about this:

1. First, take a periodic system (no boundary conditions) and d(x) = 1 (so that the rhs f(x, t) = 0) and
repeat the validation from part 1.1.1 using as a solution usol(x, t) = exp−t/td sin / cos (2πx) on x ∈ [0, 1);
figure out what the characteristic decay time td should be to satisfy the PDE. Confirm you get 2nd
order convergence for this case first. [Hint: For periodic systems, fill the ghost values by periodically
replicating interior values.]
If you still do not get 2nd order convergence, despite passing the elliptic test from part 1.1.1, take only
a single step, and confirm the error is of 2nd order over a single time step. If this fails, contact me for
help and send a minimal code that shows the problem (do not send me your whole code as I am very
unlikely to have time to look at it).

2. Now, repeat step #1 but make d(x) vary in space, and again confirm 2nd order accuracy.
3. Next, make both boundaries have a homogeneous Dirichlet BC, take d(x) = 1, and confirm 2nd order

convergence.
4. If all this works out, make the right boundary have a homogeneous Neumann BC and confirm 2nd order

convergence for d(x) = 1.
5. Continue on by making both BCs inhomogeneous.
6. Lastly, make d(x) vary in space.

1.2 [50 pts] Robustness for large time step sizes

Now consider the diffusion equation with a constant d(x) ≡ d = 1,

ut = uxx, (4)

on the domain 0 < x < 1 with Dirichlet BCs at x = 0 and Neumann BCs at x = 1,

u(0, t) = 0

ux (1, t) = 0,

and with a discontinuous initial condition

u(x, 0) =

{
0 if x ≤ 1/2

1 otherwise.
(5)

Note that the initial conditions satisfies the BCs (this is not required for parabolic PDEs but we want
the only sharp jumps to be in the middle at x = 1/2 and not at the boundaries). If you are unable to
handle Neumann BCs properly, it is OK to use Dirichlet BCs on both ends for this part.

[20 pts] Figure out a way (e.g., pen and paper) to obtain the exact solution of the PDE to a high accuracy
(say 6 digits of accuracy).

[Optional] Figure out a way to do this numerically using the FFT in time O(N logN) for any initial
condition.

Reuse the spatial discretization you already developed. Write code to integrate the resulting semi-discrete
system forward in time using the backward Euler (BE) and the implicit trapezoidal method (Crank-Nicolson,
CN) for a specified time step size. Explain how you solved the linear system arising in the implicit temporal
discretization. Then:

1. [15 pts] Using a time step size corresponding to a diffusive CFL number of µ = dτ/h2 = 1, 10, 100,
compare the numerical solutions at time t = 0.01 for the two methods (BE vs CN) to the exact
solution, and comment on your observations. Is one of the two methods clearly more robust? Figure out
numerically how small µ needs to be so that you do not get oscillations (spurious minima or maxima) in
the numerical solution. Try several different grid resolutions N to get a better feeling for what is going
on.

3



2. [15 pts] Compare the solutions obtained by the two temporal integrators at a much longer time t = 10
for a time step size corresponding to a diffusive CFL number of µ = 1000 (choose one grid resolution)
and comment on your observations. Compare the numerical solution to the steady state solution u(x,∞)
of the PDE and discuss your observations of the differences between CN and BE, and explain your
observations theoretically.

Note: In order to understand what you see and explain it will be helpful if you look at section 8.3.2 on
L-stability in the book of LeVeque and in particular Fig. 8.4.

[Optional] Can you find a method that is second-order in time but is more robust (explain in what way)
than Crank-Nicolson?

1.2.1 [Optional] Discrete Green’s Function

In the continuum setting, we use Green’s functions to solve parabolic problems. A key property of the Green’s
function for the heat equation is that it is positive and smooth. We can define a discrete Green’s function over
a time step as the solution at the end of the time step if we start with an initial condition that is a “discrete
delta function” (as discussed in class for elliptic PDEs). By looking at this Green’s function for different meth-
ods one can see how big the time step can be before some key physical property of the continuum Green’s func-
tion is violated by the discrete one. Note that this is a qualitative rather than a quantitative distinction – the
method can be low order but physically robust so it is not necessarily more accurate but rather more physical.
Compute analytically or numerically the discrete Green’s function for BE and CN for the diffusion

equation with constant coefficients in periodic conditions (or on the unbounded real line) and plot it. Discuss
what happens as the time step size increases, and try to relate it to what you observed numerically for
initial condition (5). Try to prove analytically that the solution remains positive (more precisely, monotone)
for sufficiently small µ < µ0 and figure out µ0 for the two methods.

1.3 [optional] Fun with nonlinearities

Now consider the nonlinear heat equation

ut = (d(x)ux)x + u2 (6)

on the domain −1 ≤ x < 1 with homogeneous Dirichlet boundary conditions u(−1) = u(1) = 0, with

d(x) = 2 + cos(2πx),

and initial condition
u(x, 0) = u0 [cos (πx/2)]

100 .

This PDE is a simplified model for, say, ignition of a flame when a substance burns – the variable u is
the temperature, the diffusion models heat conduction, and the nonlinear term models the heat released
by the chemical reactions during burning.

Describe a numerical method to solve this equation; you can choose which grid and spatial discretization
you want to use and what method in time you employ. There is no right or wrong answer, use the best
method you can given your abilities and prior knowledge and available time and interest. Summarize with
equations and words the method you used in your report. Find the smallest value of u0 (only to within
1-2 digits, no need for a precise number) for which the solution of (6) blows up in finite time, and make
a movie of the blow up. Are you convinced that the blow-up solution you computed is sufficiently accurate
and not a numerical error (explain your reasoning and what you tried to test this out)?
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