
Numerical Methods II, Spring 2023
Assignment IV: Pseudospectral integrator for the KdV equation

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

February 25th 2023
Due: 5pm Tuesday April 18th 2023

The optional parts of this assignment (marked blue) do not carry any points; only do optional things
if you have time and interest for your own benefit.

1 [100 points] Temporal discretization of KdV

In this assignment you will finally numerically solve the Korteweg de Vries PDE

∂tϕ = −∂xxxϕ− 3∂x
(
ϕ2
)
≡ K [ϕ(·, t)] ,

where K [ϕ(·, t)] denotes the functional on the right hand side, which only involves derivatives in x. Recall
from the second homework that on an unbounded line, the KdV equation has traveling wave solutions
in the forms of “soliton” waves

ϕsol (x, t) =
c

2
sech2

(√
c

2
(x− ct)

)
, (1)

where c is the speed of the soliton moving to the right. While the soliton solution (1) is not periodic, it
decays exponentially for large x so we can pretend it is periodic. Here we will consider the KdV equation
on a periodic domain x ∈ [−L/2, L/2) with L = 60.
We consider pseudo-spectral methods for solving this PDE, in which we represent the solution as a

(truncated) Fourier series (recall that the wavenumber k is not an integer here)

ϕ (x, t) =
∑
k

ϕ̂k(t)e
ikx.

The coefficients ϕ̂(t) are solutions of the system of ODEs

dϕ̂

dt
= F

(
ϕ̂
)
= ik3 ⊡ ϕ̂− 3ik ⊡F

((
F−1ϕ̂

) 2
)

=

= Aϕ̂+B
(
ϕ̂
)

(2)

where F denotes a Fourier transform. Here the first term Aϕ̂ ≡ ik3⊡ϕ̂ corresponding to −∂xxxϕ is stiff but

linear, and the second term B
(
ϕ̂
)
corresponding to −3∂x (ϕ

2) is a complicated nonlinear function (poten-

tially involving anti-aliasing features as well). Note that the mode with wavenumber k = 0 does not evolve
with time (this is because the KdV equation is a conservation law) and it should be omitted from the code.

In this homework you will consider two different method to solve the system of ODEs

dϕ̂

dt
= Aϕ̂+B

(
ϕ̂
)
, (3)

one an implicit-explicit multistep method, and the other an exponential Runge-Kutta integrator. Both
schemes are second order accurate and handle the linear term implicitly, but treat the nonlinear term

1

explicitly in order to avoid solving nonlinear systems of equations. If it turns out that the nonlinear term

B
(
ϕ̂
)
does not cause stiffness, then we have a hope of having a good method to solve the KdV equation.

Note: In this homework, just as in the second homework, you will continue to work with functions and
function norms, not with vectors and vector norms. That is, we won’t consider the solution to be the vector
ϕ (t) = F−1ϕ̂ (t) but rather the function ϕ (x, t). In order to approximate function norms, you need to
evaluate the solution on a finer grid using your routine interpft, just like you did in Homeworks 1 and 2.
Note: It is preferable if you treat the unmatched mode for even number of grid points that are powers

of two carefully as explained in class. If you cannot then simply use odd grid sizes that are powers of three.
Another often-used though imperfect alternative is to zero out that mode when computing odd derivatives;
this however introduces a artificial conserved variable (the unmatched mode) so it can be dangerous if
not used with some care (think about it).
[Optional] You do not have to do anti-aliasing for this homework, but it may improve things if you do

it. A good way to test things is to employ a test function that is a sum of a small number of Fourier modes
instead of a complicated nonlinear function like the soliton. Use only a small number of points (the minimal
required, so that the highest Fourier mode is the unmatched one!) so that in principle the discretization
should be exact . For the linear part of the PDE, you can write down an exact solution without ODE
solvers! For the nonlinear part, just evaluate the nonlinear term in the r.h.s. for the test function and
see if you can get it exactly correct. Doing things like handling the special mode or antialiasing does not
guarantee that you will get a more accurate answer for the soliton, but it is a way to develop a modular
code where pieces are tested and correct and the solver is as accurate as possible for very smooth solutions
such as a sum of a (small) finite number of Fourier components (i.e., for band-limited functions).

1.1 [15 pts] Absolute stability of two methods

The first ODE integration method you will use is the SBDF2 scheme explained in class. For an ODE of
the form (3) a time step of duration ∆t takes the form

ϕ̂
n+1

=
4

3
ϕ̂

n
− 1

3
ϕ̂

n−1
+

2∆t

3
Aϕ̂

n+1
+

2∆t

3

(
2B
(
ϕ̂

n
)
−B

(
ϕ̂

n−1
))

,

see also Eq. (35) in the paper of Cox and Matthews (CM) where it is called the AB2BDF2 scheme.
The second scheme is the exponential time differencing RK2 method. In class we gave a midpoint variant

but more efficient (think about it) is to use a trapezoidal explicit RK2 formula, leading to the ETDRK2 scheme

ϕ̂
n+1,⋆

=eA∆tϕ̂
n
+A−1

(
eA∆t − I

)
B
(
ϕ̂

n
)

(predictor)

ϕ̂
n+1

=ϕ̂
n+1,⋆

+A−2

(
eA∆t − I −A∆t

∆t

)(
B
(
ϕ̂

n+1,⋆
)
−B

(
ϕ̂

n
))

(corrector),

see also Eqs. (20+22) in the paper by CM (hopefully now you see why you were advised to drop the k = 0
mode). Note that direct implementation of these formulas can suffer from roundoff errors for small ∆t,
more precisely, for small |λmin|∆t where λmin is the eigenvaluee of A with smallest magnitude; make sure
this is not the case or find a way to avoid catastrophic cancellation (e.g., by using Taylor series). Make sure

to write the code in a way that avoids evaluating things more than once. For example, evaluate B
(
ϕ̂

n
)

only once per time step and store and reuse between the predictor and the corrector. In fact, observe that
since A is constant many things can be computed once and only once at the beginning (and that computation
is super cheap if done right). We will go through some sample good/bad codes in class later on.

[15 pts] Explain why the term Aϕ̂ is stiff when there are lots of Fourier modes. [Hint: Read section 8.2
in the book of LeVeque.] Then explain whether you think SBDF2 and ETDRK2 are good choices to solve

(2) and why, focusing on the linear term Aϕ̂ since the nonlinear part is complex to analyze (you will test
things out numerically in what follows) and is treated similarly in the two methods [there is no single right
or wrong answer, and you should not try to decide which method is better].

2

1.2 [85 pts] Accuracy, Stability and Robustness for a Single Soliton

Take as initial condition the soliton ϕ (x, t = 0) = ϕsol (x, 0), and then solve the KdV equation to time
T = L/c — the solution should be unchanged since it has traveled around the periodic domain once, i.e.,
ϕ (x, t = T) = ϕsol (x, 0). Recall that even though the soliton wave is not a periodic solution it decays
sufficiently rapidly that it will be a solution to very high accuracy even in a periodic domain.
Implement both the ETDRK2 and AB2BDF2 schemes to integrate the KdV equation in time, and do

each of the next tasks for each of the schemes. [Hint: It may be best to start from forward Euler first to
test things out. Also make sure you completed HW2 successfully, i.e., you tested that the r.h.s. of the ODE
is computed correctly with spectral accuracy. Also note that prime in Matlab is complex conjugate transpose;
for plain transpose add a period before the prime.]

[Optional] On the course homepage I have linked a code by A. K. Kassam and L. N. Trefethen that solves
KdV with fourth-order ETDRK4 method, along with the paper that explains how to avoid roundoff problems.
Try this method/code and compare to see how much improvement you can get from the higher-order scheme.

1.2.1 [15 pts] Empirical stability

Try several grid sizes (number of Fourier modes) that are powers of two (or powers of three), say from 32 up to
256 (remember that In homework 2 you figured out that you need to keep ∼ 200 Fourier modes in order to eval-

uate F
(
ϕ̂
)
to nine accurate digits for the soliton wave with c = 1). For each resolution, determine empirically

by playing around (i.e., simply try increasing the time step size until you get unstable behavior of the solver;
watching a movie of the solution can be very helpful) whether there is a stability limit on the time step size ∆t,
and if so, what that limit is (approximately). How does the stability limit depend on the resolution (number
of grid points, or, equivalently, the number of modes)? Note that you may need to run over multiple (say 10)
periods to see the instability; a method that appears stable over one period can be unstable over long times.

1.2.2 [20 pts] Accuracy of ODE solver

For this part choose (wisely) a certain number of points/modes to discretize the PDE in space. Solve the
ODE (2) using the two schemes up to time T . Define the error from the temporal (ODE) integration

e∆t =
∥∥∥ϕ̂∆t (T)− ϕ̂∆t=0 (T)

∥∥∥
2
,

where ϕ̂∆t (t) is the numerical approximation for time step size ∆t and ϕ̂∆t=0 (t) is the true solution. Theory
says that e∆t = O (∆t2) for sufficiently small time steps for both ODE solvers. Confirm this numerically.

Observe that while we don’t know ϕ̂∆t=0 (T), you can use the difference

ẽ∆t =
∥∥∥ϕ̂∆t (T)− ϕ̂∆t/2 (T)

∥∥∥
2

to estimate the error, as covered in Appendix A.6.3 in LeVeque. [Hint: If you choose ∆t ∼ 2−k then you
can compute the above ratio without doing two solves for each ∆t.] How small does ∆t have to be for
you to see “clear” second-order convergence? If ∆t has to be too small for you to be able to perform the
computation comfortably with the computing resources you have, feel free to evolve the solution over a
shorter time, say one quarter of the period T .
As explained in class, it is much more informative to look not just at the error at the final time but

to plot the error function e∆t (t) =
∥∥∥ϕ̂∆t (t)− ϕ̂∆t=0 (t)

∥∥∥
2
. Plot this error for several values of ∆t and

comment on your observations, in particular, are you confident your time step sizes are in the asymptotic
convergence regime?

Note: This way of testing order of convergence is sometimes called the method of successive refinements.
Note that this does not test that the ODE solver converges to the correct solution, it simply tests that
the numerical solution converges to something (potentially wrong)! In practice, one would first test the
ODE solver on a simpler system of ODEs for which maybe an analytical solution can be constructed, or
use something called the method of manufactured solutions (which we will use later in the class). Since
you already practiced ODE solvers in Homework 3, here you can confirm the ODE solver is doing the right

3

thing by confirming convergence to the soliton solution for the PDE. [Hint: Nevertheless, if you are having
problems, you may want to test your implementation of the ODE solvers on some simpler ODE system first.]

1.2.3 [25 pts] Accuracy of PDE solver

For this next part use ∼ 256 modes. This ensures that the error is dominated by the error from integrating
the ODEs, that is, the temporal discretization error is much larger than the spatial discretization error.
It also gives us hope (but certainly no guarantees!) that if we accurately solve the system of ODEs we
will also have accurately solved the PDE.

Confirm whether the (functional) error in ϕ (x, T) is O (∆t2) by comparing to the exact solution of the
PDE. Here you can (should?) try different function norms, but also remember that plotting the error as a
function is much more informative than looking at three numbers (norms). Compare the errors from the two
schemes (ETDRK2 and AB2BDF2) and conclude which one is more accurate for the same time step size (but
note that in practice what matters is which one is more accurate for the same overall computational cost).

If ∆t has to be too small for you to be able to perform the computation comfortably with the computing
resources you have, feel free to evolve the solution over a shorter time, say one quarter of the period T .

1.2.4 [25 pts] Robustness of PDE solver

Now gradually reduce the number of modes/points, and for each resolution set the time step size to be
one half (if using grid sizes that are powers of two) or one third (if using powers of three) of the empirical
stability limit you found in part 1.2.1. Plot the numerical estimate for the solution ϕ (x, T) together with
the correct solution. Combine multiple curves on one plot in some intelligent and readable way (use different
line styles, colors, symbols, etc., and put legends and captions). Comment on what you observe, i.e., discuss
how the ways in which the solver fails (do the numerical errors make the wave move faster/slower, do they
make it spread or shrink, do they cause oscillations, etc.) when the problem is under-resolved ; this now
relates to the robustness of the method.
Note: One lesson we will try to learn in this class is that a more accurate method is not necessarily

more robust (usually the opposite!). Is one of the two ODE integration schemes clearly more robust? This
is a judgment call, there is no right or wrong answer, but I hope you think about it carefully.

1.3 [Optional] Collisions between two solitons

Soliton waves have the spectacular property that they can pass through each other without changing their
shape — this makes the useful for optical communication, for example. Try to construct a still figure that
illustrates this — this is actually challenging and an animation may be more informative. Make a movie
where you start with two solitons that are well-separated and move toward each other so that eventually
the two solitons collide head on, for example, one has speed c and the other has speed −c, or, make a movie
where one faster soliton of speed 2c passes another of speed c. Use what you learned from the previous
parts of the homework to select the grid size and time step and method of temporal integration smartly.
Do not use more computational resources than necessary, in fact, try to make a “nice movie” with as few
points and as large a time step size as possible. Set the length of the domain L and the initial condition
so that the solitons do not overlap initially. Report what you did and the reasoning behind your choices.

[Even more optional] If you add another small nonlinearity to the r.h.s. of the equations, e.g., ϵ∂x (ϕ
3),

then solitons will interact with each other and scatter from one another. This would not only make cool
movies but may strain the numerical method as well. Try it if time permits.
Note: You can find lots of movies/images online, for example, check out

http: // lie. math. brocku. ca/ ~sanco/ solitons/ kdv_ solitons. php .

4

http://lie.math.brocku.ca/~sanco/solitons/kdv_solitons.php

	[100 points] Temporal discretization of KdV
	[15 pts] Absolute stability of two methods
	[85 pts] Accuracy, Stability and Robustness for a Single Soliton
	[15 pts] Empirical stability
	[20 pts] Accuracy of ODE solver
	[25 pts] Accuracy of PDE solver
	[25 pts] Robustness of PDE solver

	[Optional] Collisions between two solitons

