Numerical Methods II, Spring 2023
Assignment III: Planetary Orbits in a Solar System

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

Feb 1 2023
Due: 5pm Tuesday 3/21 2023

The optional parts of this assignment (marked blue) do not carry any points; only do optional things
if you have time and interest for your own benefit.

1 [90 points] Newton’s Laws of Motion

In this homework you will solve a system of ODEs modeling the motion of a collection of N planets around
a star. The masses of the planets will be denoted with m; and their positions with r; (¢), i =1,..., N. We
will assume that the mass of the star mg is much larger than the masses of the planets, so we can assume
that the star remains fixed at the origin, ro(¢) = 0. Here you can assume that all of the planetary orbits
are co-planar, r; = [x;(t), y;(t)] € R?, although it is [optional but encouraged] recommended that you write
your code so that the number of dimensions (2 or 3) can be an input parameter. That way your code can
be used to study the impact of a comet coming out of the plane of the solar system without any changes.
Newton’s laws of motion for the planets take the form of a system of second order ODEs,

d2'l°i al r;—T; .
—a = Filr...ry) = > Gmy—L— i=1,...,N.
§=0,j#i ||rj _TiHQ

For this assignment you can set the value of the gravitational constant G = 1, although good programming
practice suggests that you should keep it is a (perhaps global) variable in the code instead of hard-wiring
the unit value.

You will write your own code to solve the ODEs using the Bogacki-Shampine embedded RK3 method (BS-
RK23) used in the MATLAB ode23 integrator, following the description in the Wikipedia page (and my notes)
https://en.wikipedia.org/wiki/Bogacki-Shampine_method
This explicit one-step method is third order accurate, but also has an embedded second order estimator
for adaptive error control. Put effort into writing a code that can integrate any first-order system of ODEs
(like 0de23) and not just the specific ODEs for gravitational systems. That is the rhs of the ODE should
be input to the code, not hard-wired in the code. We usually write solvers assuming that the system of
ODEs is first order, unless we are using some special integrator for 2nd order PDEs, so convert the system
of ODEs to a first-order system first.

loptional| If you are familiar with symplectic 2nd order integrators you are welcome to try them and
compare to ode23, see (optional) section below.

1.1 [70pts] Single planet

Consider now the case N = 1, and denote the position of the single planet with r(¢) with length |||, = r.
It is well known since Kepler that the orbit of a planet around a massive star is an ellipse with the star
being one if its foci, with the period of the orbit given by the formula

27 a
T=—=(2

where a is the major semi-axes of the ellipse, and w is the angular frequency. The major semi-axes is given by

_Gmo
L 2B

https://en.wikipedia.org/wiki/Bogacki%E2%80%93Shampine_method

where the energy E (which is a constant of the motion) is the sum of the gravitational (potential) and
kinetic energy:

Gmoy v?

r 2
Note that here we set the mass of the planet to unity because it cancels out in the end and only mg matters
for a single planet. Assume that the initial position of the planet is 7(0) = [r(0),0] and set the initial
velocity v = dr/dt = [0,v(0)], which ensures that the initial position is either the furthest or the closest
point to the star on the orbit (i.e., it is a vertex of the ellipse).

1.1.1 [30 pts| Circular orbit

For a circular orbit, r = r[coswt, sinwt], the initial speed is v(0) = wr(0), and the centripetal and
gravitational forces are balanced,

E=—

rw’ =

r2
Use the BS-RK23 method to integrate a circular orbit over a period of revolution, using a fixed time step
size At = T /M where M is the number of time steps. While for simplicity in this part you should set
r =1 and w = 1, write your code so that these parameters can be changed easily. Observe that the only
dimensionless number that matters is At/T" and not the value of At on its own, so that changing the values
of the parameters does not require new simulations.

[10pts] Confirm that the BS-RK23 is third-order accurate as a way to test your implementation.

[20pts] Find the largest possible time step size At that ensures that the maximum error in the x and y
position of the planet is no larger than 10727, i.e., one percent relative error or two digits of accuracy (first
solution). Then compute the orbit with time step At/2 (second solution). Use Richardson extrapolation
to obtain a more accurate solution (third solution) as a function of time. For all three solutions (least
accurate, more accurate, and most accurate), plot the error

" = ||R" — r (kAt)

Y

where R¥ is the numerical approximation and 7 (t) is the true solution, as a function of time ¢ = kAt using
both a linear and a logarithmic scale for the vertical axes, and comment on your observations (indicate
which norm you used). How many digits of accuracy did you get with Richardson extrapolation? (Observe
that you could not predict/estimate this using error estimates so you are only able to answer this question
because we know the exact solution of the ODEs).

1.1.2 [40 pts| Adaptive integration

[20pts] Write an adaptive BS-RK3 integrator that ensures that each component of the position at time T
is accurate to an absolute error of 1072r(0). Start the orbit with a velocity 1, 2, 4 and 8 times smaller
than that required to get a circular orbit, so that you get increasingly more eccentric orbits. Integrate the
orbit over one period T, and compute the error in the position after that one orbit (the planet should have
returned to its initial position). Check that the adaptive time step control is doing something reasonable by
plotting x(t) for all points along the integration.

[20pts] Confirm whether the adaptive error control worked and the target error was accomplished (recall
that error control is likely to be pessimistic and reduce the time step size too much). Plot the time step size
as a function of time (including rejected ones, as explained in class), and comment on what you observe and
whether it makes sense to you or not. Try error tolerance of 1073r(0) and see what that does — does the
error tolerance in the input directly correspond to the actual error you get?

[Optional] To judge whether the adaptive control was worth it we would need to compare the total
number of time steps taken to integrate the orbit to achieve a given error tolerance with a constant versus
an adaptive time step size. In the case of a single planet we know the correct answer at the end of one
period so you can do this comparison and see what you get.

1.2 [20 pts| Fun with multiple planets

This part is for you to play and have fun but also learn how to make scientific animations (movies). Consider
the case N > 1, say N = 5, called the N-body problem. Play around with your adaptive integrator (if
your adaptive strategy failed to work, just use the built-in ode23) and see if you can construct an example
where something interesting happens, and report what you came up with. Make a movie showing off your
example. If you can produce a standalone movie file (say AVI or MPEG) that would be great — submit
that movie with your homework (must not exceed 50MB). If not, at least submit a script that can produce
the movie in real time.

Note that because the planets interact with each other via gravitational forces, in general one cannot say
much analytically about systems with more than three bodies. However, if the planets are sufficiently far
from each other the gravity of the star will dominate and each planet will orbit around the star in an elliptical
orbit (but that sounds a bit boring!). You can read more on Wikipedia under “Stability of the Solar System.”

1.3 [optional] Long-time integration

Special classes of ODE solvers have been developed for integrating Newton’s laws of motion. In particular,
symplectic methods are supposed to be much better for integrating the equations over long periods of time.
The simplest second-order symplectic method is the so-called Verlet integrator, based on a direct centered
second order finite difference for d*r/dt?,
PPl opk gkl
At?

:Ff:Fi(rlf,...,r'fV).

While in practice this method is used as a one-step method with position and velocity as two independent
variables, here we have written it as a multistep method for integrating directly the second-order equations.

Write a Verlet integrator and use it integrate a circular and a somewhat elliptical orbit over many periods
(define “many” as appropriate based on what you observe), using the time step size you found in part
but also trying larger time step sizes to see how robust the integrator is for larger time step sizes. For
this part, you can generate the two starting values for the multistep method using the exact solution. Plot
the orbits and see if you see any qualitative features. Compare the accuracy you get for the circular orbit to
what you get using the BS-RK23 method with the same time step size, and comment on your observations.

https://en.wikipedia.org/wiki/Stability_of_the_Solar_System

	[90 points] Newton's Laws of Motion
	[70pts] Single planet
	[30 pts] Circular orbit
	[40 pts] Adaptive integration

	[20 pts] Fun with multiple planets
	[optional] Long-time integration

