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Logistics
Course Essentials

e Course webpage: https://adonev.github.io/NumMethII

@ Registered students: NYU Brightspace for announcements,
submitting homeworks, grades, and sample solutions. Make sure you
have access.

@ Office hours: 3:00-4:30 pm Wednesdays, or by appointment, 1016
WWH.

TA's office hours (Mariya Savinov) office hours 2pm-3pm Mondays,
905 WWH.

@ Main textbooks available in PDF format inside the NYU
network /proxy: LeVeque, Trefethen (see course homepage).

@ Other optional readings linked on course page; Ph.D. students
should consult those sources.

e Computing is an essential part: MATLAB forms a common platform
but (scientific/numerical) Python/numpy or Julia are great too.
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Logistics
To-do

@ Assignment 0 is a Questionnaire with basic statistics about you:
submit via email as plain text or PDF.

o Download PDFs of all textbooks for reference.
@ There will be regular homework assignments (50% of grade), mostly
computational. Points from all assignments will be added together.

@ Submit the solutions as a PDF (give LaTex/lyx a try!), via NYU
Brightspace. First assignment posted already and due in two
weeks.

Due time is 5pm the day of class.

@ You can choose between a take-home final or final project (50%),

due TBD.
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Logistics
Academic Integrity Policy

o If you use any external source, even Wikipedia, make sure you
acknowledge it by referencing all help.

@ It is encouraged to discuss with other students the mathematical
aspects, algorithmic strategy, code design, techniques for debugging,
and compare results.

@ Copying of any portion of someone else’s solution or allowing others
to copy your solution is considered cheating.

e Code sharing is not allowed: You must write/debug/run your own
code.
@ Submitting an individual and independent final is crucial and no
collaboration will be allowed for the final.
@ Common bad justifications for copying:
e We are too busy and the homework is very hard, so we cannot do it on
our own.

e We do not copy each other but rather “work together.”
o | just emailed Joe Doe my solution as a “reference.”
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Grading Standards

e Points will be added over all assignments (50%) and the take-home
final (50%).
@ No makeup points (solutions may be posted on NYU Brightspace).

@ The actual grades will be rounded upward (e.g., for those that are
close to a boundary), but not downward:

e 925-max = A
e 87.5-92.5 = A-
e 80.0-87.5 = B+
e 72.5-80.0=B
e 65.0-72.5 = B-
e 57.5-65.0 = C+
e 50.0-57.5=C
e 42.5-50.0 = C-
e min-425=F
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Trigonometric Orthogonal Polynomials

Periodic Functions

e Consider now interpolating / approximating periodic functions
defined on the interval | = [0, 27]:

Vx f(x+2m) = f(x),

as appear in practice when analyzing signals (e.g., sound/image
processing).

@ Also consider only the space of complex-valued square-integrable
functions [3_,

27
Vel (f,f)=|f?= / |F(x)]? dx < oo.
0

@ Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.

@ Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

di(x) = €™ = cos(kx) + isin(kx), k=0,%£1,42,...
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Trigonometric Orthogonal Polynomials

Fourier Basis Functions

dr(x) =™ k=0,+1,42,...

@ It is easy to see that these are orhogonal with respect to the
continuous dot product

27 27
(¢, ¢k) = ¢j(x)Pk(x)dx = / exp[i(j — k)x] dx = 276
—0 0

X
@ The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L%W, i.e.,

Vfels : f(x)= Z fe™ in the sense of L3,

where the Fourier coefficients for frequency or wavenumber k are:

» (f 1 [ :
fo = (f, 9k = —. f(x)e™ " dx.
27 2 0

There are different conventions for 27 factors.
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Trigonometric Orthogonal Polynomials
Truncated Fourier Basis

e For a general interval [0, X] the discrete frequencies are
21
k= YH k=0,£1,4+2, ...
@ For non-periodic functions one can take the limit X — oo in which
case we get continuous frequencies.
@ Now consider a discrete Fourier basis that only includes the first N

basis functions, i.e.,

k=—-(N-1)/2,...,0,...,(N—1)/2 if Nis odd
{k:N/2,...,O,...,N/21 if N is even,
and for simplicity we focus on N odd.
@ The least-squares spectral approximation for this basis is:
(N-1)/2
F)mpx)= Y. Fe™

k=—(N—1)/2
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Trigonometric Orthogonal Polynomials
Discrete Dot Product

@ Now also discretize a given function on a set of N equi-spaced nodes

2
xj:jhwherehzﬁw

where j = N is the same node as j = 0 due to periodicity so we only
consider N instead of N 4 1 nodes.

@ We also have the discrete dot product between two discrete
functions (vectors) f; = f(x;):

N—-1
f-g=h) fg
=0

@ The discrete Fourier basis is discretely orthogonal
¢k . ¢k/ = 2775[(7[(/
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Trigonometric Orthogonal Polynomials

Proof of Discrete Orthogonality

The case k = k' is trivial, so focus on

¢k'¢k/:Of0rk§ék/

Zexp ikx;) exp (—ik'x;) Zexp [i (Ak)xj] = Z [exp (ih (Ak))Y

J

where Ak = k — k’. This is a geometric series sum:

N

11—~z
b - Oy = = 'fk;ék’
ko Fk 1—=z 0i

since z = exp (ih (Ak)) # 1 and
N = exp (ihN (Ak)) = exp (27i (Ak)) =
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Trigonometric Orthogonal Polynomials
Discrete Fourier Transform

@ The Fourier interpolating polynomial is thus easy to construct

(N-1)/2

W)= 3 BV 6Mg) = flx)

k=—(N—1)/2

where the discrete Fourier coefficients are given by

W o 1 N—1
s —_ ) k —_— . [ .
=% =N Eoﬁ F(x) exp (—ikx))

e Simplifying the notation and recalling x; = jh, we define the the
Discrete Fourier Transform (DFT):

R s < 27rUk>
f; exp
=0
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Trigonometric Orthogonal Polynomials
Discrete spectrum

o The set of discrete Fourier coefficients f is called the discrete
spectrum, and in particular,

is the power spectrum which measures the frequency content of a
signal.

o If f is real, then f satisfies the conjugacy property
Fu =1,

so that half of the spectrum is redundant and % is real.

@ For an even number of points N the largest frequency k = —N/2
does not have a conjugate partner. It is special and must be treated
with care.
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Trigonometric Orthogonal Polynomials

Fourier Spectral Approximation

e Discrete Fourier Transform (DFT):

N-1

A A 1 2mijk
Forward f — f: f, = N fiexp <— 7;VU >
j=0
(N2 2mijk
Inverse f — f :  f(x;) = gb(N)(xj-) = Z fi exp ( N )
k=—(N—1)/2

@ There is a very fast algorithm for performing the forward and
backward DFTs (FFT).

@ There is different conventions for the DFT depending on the
interval on which the function is defined and placement of factors of
N and 27.

Read the documentation to be consistent!

A. Donev (Courant Institute) FFT 1/24/2023 16 / 40



Trigonometric Orthogonal Polynomials

Spectral Convergence (or not)

@ The Fourier interpolating polynomial ¢(x) has spectral accuracy,
i.e., exponential in the number of nodes N

|70 = ™) ~ e

for analytic functions (more details shortly).

@ Specifically, nice functions exhibit rapid decay of the Fourier
coefficients with k, e.g., exponential decay ‘?’k‘ ~ e Ikl

@ Discontinuities cause slowly-decaying Fourier coefficients, e.g., power
law decay ’?k’ ~ k™1 for jump discontinuities.

@ Jump discontinuities lead to slow convergence of the Fourier series for

non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

Hf(x) _ ¢(N)(X)H N {N_l at points away from jumps

const. at the jumps themselves
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon

Approximation of a square wave timing signal (f, = 20 MHz)
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Trigonometric Orthogonal Polynomials
Gibbs Phenomenon

Reconstruction of the periodic square waveform with 1, 3,5, 7, 9 sinusoids
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Trigonometric Orthogonal Polynomials

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, ...

15
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Approximation Theory

Trigonometric projection vs. interpolation

o | will temporarily switch to notation in paper on periodic chebfun in
paper of Trefethen et al, assuming odd number of points for
simplicity:

2
f(t € [0,27]) discretized with N = 2n + 1 points t,, = ”T’"

Trigonometric projection (¢(x)): fu(t) = Z ce™t (o(x))
k=—n
Trigonometric interpolant: p,(t Z Ze'kt gZ)(N)(x)).
k=—n

@ Aliasing means that one cannot distinguish two different Fourier
modes on a given grid:

exp (iktm) = exp (i (k + jN) tm)
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Approximation Theory

Poisson Summation Formula

@ Observe that because of aliasing:

o0 n

f(tm) = Z cre’ktm = Z i ck+jNei(k+jN)tm

k=—0oc0 k:—njzfoo

n

[o¢]
ikt
= E § Ck+jn | €77

k=—n \j=—o0
n
Recall: pp, (tm) = Z & e'ktm
k=—n
@ Since the trigonometric interpolant is unique, we get Poisson’s

summation formula
(oo}
Ck = E Ck+jN
j=—00
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Approximation Theory
The importance of smoothness

e Total variation of differentiable function (can be generalized):

27
TVIfF] = / F(0] o, denote v = TV 7).
0

@ We have two cases where we have nice error estimates:
o If fis v > 0 times differentiable, then

ol < ——=
e 2m [k|V T

which can be proved by integrating ¢, = (27) " fozﬂ f(x)e~*<dx by
parts v 4 1 times.

o If £ (t) is analytic in a half-strip around the real axis of half-width «
and bounded by |f (t)| < M, then

lek| < Me—elkl
which can be proved by shifting the contour of integration above or

below the real line by a.
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Approximation Theory

Approximation error: Differentiable

o If fis v > 1 times differentiable then

If = falloe = || D ake™|| < > el

|k|>n o |kI>n
o0
4 Vv
<23 g =2 sk
k=n-+1 n

@ Performing the integral we get that if f is v > 1 times differentiable,
then

[ = falloo <

oo —

mTvnY

@ You can replace f, with p, if you multiply the r.h.s. by 2 to account
for the additional aliasing error.
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Approximation Theory

Approximation error: Analytic

e If f(t) is analytic in the half strip then

2Me—an

e&i

If = fallo <2 > Me @k =
k=n+1

(geometric series sum)

@ You can replace f, with p, if you multiply the r.h.s. by 2 to account
for the additional aliasing error.

@ The Fourier interpolating trigonometric polynomial is spectrally
accurate and a really great approximation for (very) smooth functions.
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Approximation Theory
Trapezoidal Rule

o Consider using the trapezoidal rule to approximate a periodic
integral:

27 -
/N:Nzlf(m):co
o If fis v > 1 times differentiable then
4v
|/N - /| < W

e If (t) is analytic in the half strip then trapezoidal rule is spectrally

accurate;
47 M

Iy -1 < ———.
|N |—eaN_]_
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Fast Fourier Transform

DFT

@ Recall the transformation from real space to frequency space and

back:
1= 2mijk (N—1)  (N—1)
f—f: fk:NZﬁexp<— N), k===
j=0
(N=1)/2 ik
fof: = > fkexp< N>, j=0,...,N—1
k=—(N-1)/2

@ We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k =0,..., N:

N—-1 ..

1 2 ijk

— f; — k=0,...,N—1
mjofex"( N)’ O

Forward f — f : ?k =

1 = drijk
Inverse f - f: f=— Fic ex , j=0,...,N—-1
TN p< N> ’
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Fast Fourier Transform

FFT

@ We can write the transforms in matrix notation:

where the unitary Fourier matrix (fft(eye(N)) in MATLAB) is an
N x N matrix with entries

N , .
u}k):uﬂ,\/;, wy = e 2N,

e A direct matrix-vector multiplication algorithm therefore takes O(N?)
multiplications and additions.

@ Is there a faster way to compute the non-normalized

N-1
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Fast Fourier Transform

FFT

@ For now assume that N is even and in fact a power of two, N = 2",
@ The idea is to split the transform into two pieces, even and odd

points:
N/2-1 ' N/2-1 _
Sofqit 2 k= X0y (@R ek X A (R
i=2j’ J=2j'+1 j'=0 J'=0
@ Now notice that
Wi = e *miIN = e=2mi/(NID) )

@ This leads to a divide-and-conquer algorithm:
N/2—1 N/2—1

~ '/k '/k
fk = Z @j/w’N/z—i—wK, Z f2_]"+1("j]N/2
J'=0 J'=0

fes0 = Unjafeven + w7 Un jofoda
?k<0 = UN/2feven + w/k\/<0UN/2fodd
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Fast Fourier Transform
FFT Complexity

e The Fast Fourier Transform algorithm is recursive (in standard
ordering k = [-(N —1)/2: (N —1)/2] :

FFTw(F) = [FFTg (Feven) + Wi<o 3 FF T (Foug),

FFTy (Feven) + Wicso 0 FF T (fodd)]

where wy = wk, and [ denotes element-wise product.
When N =1 the FFT is trivial (identity).
@ To compute the whole transform we need log,(/N) steps, and at each
step we only need N multiplications and N additions at each step.
@ The total cost of FFT is thus much better than the direct method's
O(N?): Log-linear
O(N log N).
@ Even when N is not a power of two there are ways to do a similar

splitting transformation of the large FFT into many smaller FFTs.
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Fast Fourier Transform
In MATLAB

@ The forward transform is performed by the function f = fft(f) and
the inverse by f = fft(f). Note that ifft(fft(f)) = f and f and f may
be complex. MATLAB uses the FFTW library, as does numpy.

o In MATLAB, and other software, the frequencies are not ordered in
the “normal” way —(N —1)/2 to +(N — 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny” ordering is

N—-1 N-1
0,1,...,(N—-1)/2, —T,—T+1,...,—1.
This is because such ordering (shift) makes the forward and inverse
transforms symmetric, and reduces the amount of memory traffic.

@ The function fftshift can be used to order the frequencies in the

“normal” way, and ifftshift does the reverse:

f = ffeshift(fft(f)) (normal ordering).

@ Note that there are different normalization conventions used in

different software.
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Fast Fourier Transform

FFT-based noise filtering (1)

Fs = 1000; % Sampling frequency
dt = 1/Fs; % Sampling interval

L = 1000; % Length of signal

t = (0:L—1)xdt; % Time vector
T=Lxdt: % Total time interval

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*xsin(2xpi*x50xt) + sin(2xpi*x120xt);
y = x + 2xrandn(size(t)); % Sinusoids plus noise

figure(1); clf;

plot(t(1:100),y(1:100), b——"); hold on

title ("Signal Corrupted with Zero—Mean Random Noise ")
xlabel ("time ")
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Fast Fourier Transform

FFT-based noise filtering (2)

if(0)
N=(L/2)*2; % Even N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/Tx [0:N/2—1, —N/2:—-1];
% Normal ordering:
f_normal = 2xpi/T* [-N/2 : N/2-1];
else
N=(L/2)*x2—1; % Odd N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/Tx [0:(N-1)/2, —(N-1)/2:—1];
% Normal ordering:
f_normal = 2xpi/T+ [—(N=1)/2 : (N=1)/2];
end
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Fast Fourier Transform

FFT-based noise filtering (3)

figure (2); clf; plot(f_funny, abs(y_hat), 'ro"); hold

y_hat=fftshift(y_hat);
figure (2); plot(f_normal, abs(y_hat), 'b—=");

title ('Single—Sided Amplitude Spectrum of y(t)')
xlabel ('Frequency (Hz)')
ylabel ('Power")

y_hat(abs(y_hat)<250)=0; % Filter out noise

y_filtered = ifft(ifftshift(y_hat));
figure(1); plot(t(1:100),y_filtered (1:100), 'r—")
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Fast Fourier Transform

FFT results

Single-Sided Amplitude Spectrum of y(t)
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Fast Fourier Transform
Multidimensional FFT

@ DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

Ny —1 N, . .
A 27i (Jkx + jyky)
f:NszMem[ )]
Jy=0 jx=
N,—1 Ny—1 .
27ij, k. 1 2rij, k
o B () [ B ()
Jy=0

@ For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:

f — Trow (Fcol (f))
@ The cost is N, one-dimensional FFTs of length N, and then N
one-dimensional FFTs of length N,:
N, N, log Ny + N, N, log N, = N, N, log (NxN,) = Nlog N
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Conclusions
Conclusions/Summary

@ Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

@ The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

@ Functions with discontinuities are not approximated well: Gibbs
phenomenon.

@ The Discrete Fourier Transform can be computed very efficiently
using the Fast Fourier Transform algorithm: O(N log N).

A. Donev (Courant Institute) FFT 1/24/2023 40 /40



	Logistics
	Trigonometric Orthogonal Polynomials
	Approximation Theory
	Fast Fourier Transform
	Conclusions

