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Convolutions using FFT

Filtering using FFTs

Because FFT is a very fast, almost linear algorithm, it is used often to
accomplish tasks in data processing, e.g., noise filtering (see example
in previous lecture), computing (auto)correlation functions, etc.

Denote the (continuous or discrete) Fourier transform with

f̂ = F (f) and f = F−1
(
f̂
)
.

Plain FFT is used in signal processing for digital filtering (low-pass,
high-pass, or band-pass filters)

How to do it: Multiply the spectrum by a filter Ŝ(k) discretized as

ŝ =
{
Ŝ(k)

}
k
:

ffiltered = F−1
(
ŝ⊡ f̂

)
= f ⊛ s,

where ⊡ denotes element-wise product, and ⊛ denotes convolution.
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Convolutions using FFT

Convolution

For continuous function, an important type of operation found in
practice is convolution (smoothing) of a (periodic) function f (x)
with a (periodic) kernel K (x):

(K ⊛ f ) (x) =

∫ 2π

0
f (y)K (x − y)dy .

It is not hard to prove the convolution theorem:

F (K ⊛ f ) = F (K )⊡F (f ) .

Importantly, this remains true for discrete convolutions:

(K⊛ f)j =
1

N

N−1∑
j ′=0

fj ′Kj−j ′ ⇒

F (K⊛ f) = F (K)⊡F (f) ⇒ K⊛ f = F−1 (F (K)⊡F (f))
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Convolutions using FFT

Proof of Discrete Convolution Theorem

Assume that the normalization used is a factor of N−1 in the forward and
no factor in the inverse DFT:

fj =
N−1∑
k=0

f̂k exp

(
2πijk

N

)
, and f̂k =

1

N

N−1∑
j=0

fj exp

(
−2πijk

N

)

[
F−1 (F (K)⊡F (f))

]
k
=

N−1∑
k=0

f̂k K̂k exp

(
2πijk

N

)
=

N−2
N−1∑
k=0

(
N−1∑
l=0

fl exp

(
−2πilk

N

))(N−1∑
m=0

Km exp

(
−2πimk

N

))
exp

(
2πijk

N

)

= N−2
N−1∑
l=0

fl

N−1∑
m=0

Km

N−1∑
k=0

exp

[
2πi (j − l −m) k

N

]
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Convolutions using FFT

contd.

Recall the key discrete orthogonality property

∀∆k ∈ Z : N−1
∑
j

exp

[
i
2π

N
j∆k

]
= δ∆k ⇒

N−2
N−1∑
l=0

fl

N−1∑
m=0

Km

N−1∑
k=0

exp

[
2πi (j − l −m) k

N

]
= N−1

N−1∑
l=0

fl

N−1∑
m=0

Kmδj−l−m

= N−1
N−1∑
l=0

flKj−l = (K⊛ f)j

Computing convolutions requires 2 forward FFTs, one element-wise
product, and one inverse FFT, for a total cost N logN instead of N2.
We can use this to solve periodic integro-differential equations
involving convolutions, for example (recall that trapezoidal rule for the
convolution is spectrally accurate for analytic functions)!
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Spectral Differentiation

Spectral Derivative

Consider approximating the derivative of a periodic function f (x),
computed at a set of N equally-spaced nodes, f.

I will use here the FFT way of ordering k = 0 . . .N − 1, but this is
equivalent to the natural ordering k = −(N − 1)/2 · · · − (N − 1)/2.
For example exp(i(N − 2)jh) = exp(ijN(2π/N)) exp(−2ijk(2π/N)) =
1 exp(−2ijkh), so k = N − 2 is the same mode as k = −2 (they are
aliased in fact).

We can differentiate the spectral approximation: Spectral derivative

f ′(x) ≈ ϕ′(x) =
d

dx
ϕ(x) =

d

dx

(
N−1∑
k=0

f̂ke
ikx

)
=

N−1∑
k=0

f̂k
d

dx
e ikx

=
N−1∑
k=0

(
ik f̂k

)
e ikx =

N−1∑
k=0

(̂ϕ′)ke
ikx ⇒

(̂ϕ′)k = ik f̂k ⇒ ϕ′ = F−1
(
ik⊡ f̂

)
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Spectral Differentiation

Unmatched mode

Recall that for even N there is one unmatched mode, the one with
the highest frequency and amplitude f̂N/2.

We need to choose what we want to do with that mode; see notes by
S. G. Johnson (MIT) linked on webpage for details:

ϕ(x) = f̂0 +
∑

0<k<N/2

(
f̂ke

ikx + f̂N−ke
−ikx

)
+ f̂N/2 cos

(
Nx

2

)
.

This is the unique“minimal oscillation” trigonometric interpolant.

Differentiating this we get

(̂ϕ′)k = f̂k


0 if k = N/2

ik if k < N/2

i (k − N) if k > N/2

.

Real valued interpolation samples result in real-valued ϕ(x) for all x .
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Spectral Differentiation

FFT-based differentiation

% From Nick Tre fe then ’ s S p e c t r a l Methods book
% D i f f e r e n t i a t i o n o f exp ( s i n ( x ) ) on (0 ,2∗ p i ] :

N = 8 ; % Even number !
h = 2∗ p i /N; x = h ∗ ( 1 :N) ’ ;
v = exp ( s i n ( x ) ) ; vpr ime = cos ( x ) . ∗ v ;
v ha t = f f t ( v ) ;
i k = 1 i ∗ [ 0 :N/2−1 0 −N/2+1:−1] ’ ; % Zero s p e c i a l mode
w hat = i k .∗ v ha t ;
w = r e a l ( i f f t ( w hat ) ) ;
e r r o r = norm (w−vpr ime , i n f )
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Spectral Differentiation

Differentiation matrices

Writing g = f ′ we can denote this in matrix notation ĝ = D̂1f̂, where
D̂1 is a diagonal differentiation matrix with ik on its diagonal (why
does it have to be a matrix?).

Observe that D̂
⋆

1 = −D̂1 (anti-Hermitian).

In real space g = Dfand in Fourier space ĝ = D̂f̂, related by

D = F−1D̂F = F⋆D̂F,

where F is the unitary DFT matrix.
Observe this is a similarity transformation!

Here Ff and F⋆f̂ are computed using the (forward/inverse) FFT in
nearly linear time.
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Spectral Differentiation

Second derivative

Differentiating the interpolant twice we get

(̂ϕ′′)k = f̂k

{
−k2 if k < N/2

− (k − N)2 if k ≥ N/2
.

Similarly, if g = f ′′ then ĝ = D̂2f̂, where D̂2 has −k2 on its diagonal,
D̂

⋆

2 = D̂2 (Hermitian, same for D2).

Double differentiating is different from differentiating twice in
sequence, i.e., D2 ̸= D2

1.

Why is D2 “better” than D2
1? They have the same spectral accuracy.

D2
1 has a nontrivial null space of 1 and F−1eN/2, while D2 has only 1.

So D2 is closer to the continuum Laplacian operator in periodic
domains (having only constant functions in its null space). This is
important when solving elliptic/parabolic PDEs.
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Spectral Differentiation

Discrete Matrices vs Continuum Operators

The lesson learned from D2 ̸= D2
1 is quite general: Continuum

identities don’t always translate to discrete identities.

Many properties that seem obvious in continuum, may not work for
discretizations:

Chain and product rules e.g., (cu)′ = c ′u + cu′.
Integration by parts (including boundary terms).
Operators commute, e.g., ∂x (∂y f ) = ∂y (∂x f ).
Null spaces, eigenvalue spectrum properties (e.g., positive definiteness,
symmetry, etc.).

Mimetic discretizations try to mimic some of the properties of
continuum operators.
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Spectral Differentiation

Sturm-Louville Problems

As an example, consider the periodic Sturm-Louville (SL) operator
appearing in many boundary-value problems (BVPs):

L = − d

dx
c(x)

d

dx
, c(x) > 0.

From PDE class we know that this is a symmetric positive
semidefinite (SPsD) differential operator with only constant
functions in its null space; proving this uses integration by parts.

When discretized, this will become a matrix L. We want this matrix
to be SPsD with only e in its null space.

It is a bad idea is to use the chain rule and discretize:

−Lf =
d

dx
c(x)

d

dx
f (x) = c ′f ′ + cf ′′

−Lf = (D1c)⊡ (D1f) + c ⊡ (D2f) (BAD!)

since this is not an SPsD L.
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Spectral Differentiation

Pseudospectral SL operator

Another possibility is the pseudospectral algorithm that does not
use the chain rule:

Lf = −D1 (c⊡D1f) .

Lf = −F−1
(
ik⊡F

(
c⊡

(
F−1 (ik⊡ (F f))

)))
.

In words: Go to Fourier space using the FFT, multiply coefficients by
ik, go back to real space with iFFT, multiply by c(x) in real-space,
then go back to Fourier space (FFT) and multiply coefficients by −ik,
and then go back to real space again (iFFT).

Why does this work? In matrix notation

L = −
(
F⋆D̂1F

)
C
(
F⋆D̂1F

)
= D1CD

⋆
1,

where C is a diagonal matrix with c > 0 on its diagonal.

This is obviously SPsD since C is SPD (why?).
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Spectral Differentiation

Pseudospectral SL algorithm

For even N the pseudo-spectral L has a nontrivial null space just like D2
1

does (think c = 1), but this can be fixed (see article by Johnson):

1 Compute f ′ using FFT/iFFT but save the coefficient f̂N/2 (two FFTs).

2 Compute g = c⊡ f ′ in real space (pseudospectral part).

3 Compute ĝ using FFT.

4 Compute (̂Lf) in Fourier space as:

(̂Lf)k =


ĉ0
(
N
2

)2
f̂N/2 if k = N/2

−ikĝk if k < N/2

−i (k − N) ĝk if k > N/2

.

5 Compute Lf in real space using an iFFT.
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Solving PDEs using FFTs

KdV equation

Consider as an example the periodic Korteweg – de Vries equation on
[0, 2π),

∂tϕ = −∂xxxϕ+ 6ϕ (∂xϕ) ,

which models waves in a channel and has soliton solutions.

First note that ϕϕx = ∂x
(
ϕ2/2

)
and this is the right form to use

because KdV is a conservation law and ϕ2/2 is a flux.

Not all forms of PDEs equivalent on paper are equivalent
numerically! We prefer

∂tϕ = −∂xxxϕ+ 3∂x
(
ϕ2
)
.

The idea is to use a Fourier series representation,

ϕ (x , t) =
∑
k

ϕ̂k(t)e
ikx .
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Solving PDEs using FFTs

Spectral spatial discretization

If we go to Fourier space we get a system of coupled (nonlinear)
ODEs:

d ϕ̂k

dt
= ik3ϕ̂k + 3ik (̂ϕ2)k ⇒

dϕ̂

dt
= ik3 ⊡ ϕ̂+ 3ik⊡F

((
F−1ϕ̂

) 2
)
.

Note that the unmatched mode N/2 should be set to zero for the
third derivative (all odd derivatives in fact).

This is a pseudo-spectral spatial discretization and will be
spectrally accurate for analytic solutions.

In order to actually compute solutions we need methods to solve
systems of ODEs (coming up soon)!
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Solving PDEs using FFTs

Nonlinear PDEs

Observe that if the nonlinear term was not there, we could write the
solution right away:

ϕ̂k (t) = ϕ̂k (0) exp
(
ik3t

)
for all k.

This is called an exponential temporal integrator and can be used
to build accurate integrators for the nonlinear KdV equation.

If the equation were linear, then ϕ̂k (t) = 0 if ϕ̂k (0) = 0: linear
PDEs do not generate new Fourier components.

But this is not true for nonlinear equations: in general, the solution
will have nonzero components for all k for sufficiently long times, and
aliasing becomes a problem.

An extreme example is Burger’s equation, which develops
singularities (shocks), leading to the Gibbs phenomenon and loss of
spectral accuracy.
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Solving PDEs using FFTs

Aliasing

As an example, consider the product (or square)

w(x) = u(x)v(x) ⇒

w(x) =

(
n∑

k′′=−n

ûk′′e ik
′′x

)(
n∑

k=−n

ûk′e ik
′x

)
=

2n∑
k=−2n

ŵke
ikx

So we doubled the number of Fourier modes, and handling this would
require growing our FFT grid along the way!

What we want to compute is the truncated Fourier series

w(x) ≈ w̃(x) =
n∑

k=−n

ŵke
ikx .

If we do this naively using FFTs on a grid of N = 2n + 1 points,
however, we will alias the modes |k| > n with those with |k| < n and
this will introduce aliasing error.
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Solving PDEs using FFTs

Anti-aliasing via oversampling

But there is an easy fix using oversampling. Take u = v for
simplicity and even N:

1 Evaluate u(x) on a grid of N points, take the FFT to compute û.

2 Padd the FFT to size M = 2N, avoiding fftshift (see fftinterp):

(û)padded = [û (1 : N/2) zeros(1,M − N) û (N/2 + 1 : end)] .

Note: It can be shown that M = 3N/2 also gives the same result.

3 Compute an oversampled uos(x) on a grid of size 2N by taking the
iFFT of (û)padded.

4 Compute u
2
os in real space, and take the FFT to compute ŵ.

5 Truncate to N Fourier coefficients by returning
[ŵ (1 : N/2) ŵ (M − N/2 + 1 : end)].

A. Donev (Courant Institute) Spectral 2/5/2023 23 / 34



Chebyshev Series via FFTs

Chebyshev Series via FFTs

A. Donev (Courant Institute) Spectral 2/5/2023 24 / 34



Chebyshev Series via FFTs

Chebyshev Polynomials

If we are solving PDEs on a bounded interval, say [−1, 1] for
simplicity, we need other orthogonal polynomials, not trig ones.

Recall from Numerical Methods I the Chebyshev polynomials:

Tn (x ∈ [−1, 1]) = cos (nθ) where x = cos (θ ∈ [0, 2π]).

T0 (x) = 1, T1(x) = x , T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x , . . .

These are orthogonal with respect to the weighted inner/dot product:

∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

=


π m = n = 0

π/2 m = n > 0

0 m ̸= n

.
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Chebyshev Series via FFTs

Chebyshev Interpolants

We can represent functions using these polynomials as basis functions,

f (x) =
∞∑
n=0

f̆nTn(x) ⇒

f̆n>0 =
2

π

∫ 1

−1
f (x)Tn(x)

dx√
1− x2

.

We discretize the function pointwise at N + 1 Chebyshev nodes

θj = jπ/N, j = 0 . . .N

xj = cos θj

This gives us the Chebyshev interpolant (approximation):

ϕ(x) =
N∑

n=0

f̆nTn(x).
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Chebyshev Series via FFTs

Chebyshev Nodes
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Chebyshev Series via FFTs

Chebyshev via Fourier

Changing variables from x to θ we get

f̆n>0 =
2

π

∫ 1

−1
f (x)Tn(x)

dx√
1− x2

.

=

∫ π

−π
f (cos θ) cos (nθ) dθ

=

∫ π

−π
f (cos θ)

(
exp (inθ) + exp (−inθ)

2

)
dθ.

So if we consider instead of f (x) the function

g(θ) = f (cos θ)

then we can go from Fourier coefficients of g to Chebyshev for f :

f̆n>0 = ĝ−n + ĝn

This is in fact a cosine transform, and there is a Fast Cosine
Transform, but we will not discuss it.
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Chebyshev Series via FFTs

Chebyshev-Fourier transformation
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Chebyshev Series via FFTs

Chebyshev via FFT

This means that we can do FFTs in equispaced points on
θ ∈ [0, 2π] instead of Chebyshev on non-equispaced nodes.

Note that we want to extend this to θ ∈ [0, 2π] to be periodic and not
θ ∈ [0, π], so we double the number of points and do the FFTs on
vectors of length 2N.

If f (x) can be extended analytically just outside of [−1, 1], then we
get spectral accuracy.

Intuition: Chebyshev polynomials are sine waves “wrapped
around a cylinder and viewed from the side”.

One can approximate derivatives using the FFT; all that is needed
is change of variables from x to θ using the chain rule.

The chain of variables adds factors of the form
(
1− x2

)−p/2
(where p

is an integer) when converting from Fourier coefficients derivatives of
g to derivatives of f .
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Conclusions

Conclusions
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Conclusions

Function Norms

Consider a one-dimensional interval I = [a, b]. Standard norms for
functions similar to the usual vector norms:

Maximum norm: ∥f (x)∥∞ = maxx∈I |f (x)|
L1 norm: ∥f (x)∥1 =

∫ b

a
|f (x)| dx

Euclidian L2 norm: ∥f (x)∥2 =
[∫ b

a
|f (x)|2 dx

]1/2
Different function norms are not equivalent!

An inner or scalar product (equivalent of dot product for vectors):

(f , g) =

∫ b

a
f (x)g⋆(x)dx

Formally, function spaces are infinite-dimensional linear spaces.
Numerically we always truncate and use a finite basis.
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Conclusions

Discrete Function Norms

Consider a set of m nodes xi = a+ ih with a constant grid spacing
h = (b − a)/m, and evaluate the function at those nodes pointwise

f = {f (x0), f (x1), · · · , f (xm)} .

We define the discrete“function norms”and“dot products”, with
periodic BCs:

∥f (x)∥2 ≈

[
h
m−1∑
i=0

|f (xi )|2
]1/2

=
√
h ∥f∥2,

∥f (x)∥1 ≈ h
m−1∑
i=0

|f (xi )| = h ∥f∥1,

∥f (x)∥∞ ≈ max
i

|f (xi )| = ∥f∥∞

More generally, discretize the integrals consistently, and account for
boundary conditions.
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Conclusions

Conclusions/Summary

Convolution in real space becomes multiplication in Fourier space,
and vice versa.

Spectrally-accurate derivatives f (ν) of analytic functions f can be
done by multiplication by (ik)ν in Fourier space, zeroing out the
unmatched mode for even N and odd ν.

Not all forms of operators and PDEs equal on paper are equal
numerically. Choose the form that preserves the important
properties of the continuum PDE: conservation laws,
self-Hermitian operators, completeness (this is where understanding
PDEs is crucial beyond superficial: functional analysis).

Nonlinear PDEs can be discretized spectrally in space to a system
of coupled nonlinear ODEs. Non-periodic domains can be handled
by using orthogonal polynomials but boundary conditions need to be
thought about some more!
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