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Long Time (In)Stability

Stiff van der Pol system
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A stiff problem is one where ∆t has to be small even though the solution
is smooth and a large ∆t is OK for accuracy.
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Long Time (In)Stability

Stiff example

In section 7.1 LeVeque discusses

x ′(t) = λ (x − cos t)− sin t.

with solution x(t) = cos t if x(0) = 1.

If λ = 0 then this is very simple to solve using Euler’s method, for
example, ∆t = 10−3 up to time T = 2 gives error ∼ 10−3.

For λ = −10, one gets an even smaller error with the same time step
size.
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Long Time (In)Stability

Instability

But for λ = −2100, results for ∆t > 2/2100 = 0.000954 are completely
useless: method is unstable.
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Long Time (In)Stability

Conditional Stability

Consider the model problem for λ < 0:

x ′(t)= λx(t)

x(0) = 1,

with an exact solution that decays exponentially, x(t) = eλt .

Applying Euler’s method to this model equation gives:

x (k+1) = x (k) + λx (k)∆t = (1 + λ∆t) x (k) ⇒

x (k) = (1 + λ∆t)k

The numerical solution will decay if the time step satisfies the
stability criterion

|1 + λ∆t| ≤ 1 ⇒ ∆t < − 2

λ
.

Otherwise, the numerical solution will eventually blow up!
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Long Time (In)Stability

Unconditional Stability

The above analysis shows that forward Euler is conditionally
stable, meaning it is stable if ∆t < 2/ |λ|.
Let us examine the stability for the model equation x ′(t) = λx(t) for
backward Euler:

x (k+1) = x (k) + λx (k+1)∆t ⇒ x (k+1) = x (k)/ (1− λ∆t)

x (k) = x (0)/ (1− λ∆t)k

We see that the implicit backward Euler is unconditionally stable,
since for any time step

|1− λ∆t| > 1.
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Stiff Equations

Stiff Equations

For a real “non-linear”problem, x ′(t) = f [x(t), t], the role of λ is
played by

λ←→ ∂f

∂x
.

Consider the following model equation:

x ′(t) = λ [x(t)− g(t)] + g ′(t),

where g(t) is a nice (regular) function evolving on a time scale of
order 1, and λ≪ −1 is a large negative number.

The exact solution consists of a fast-decaying“irrelevant”component
and a slowly-evolving“relevant”component:

x(t) = [x(0)− g(0)] eλt + g(t).

Using Euler’s method requires a time step ∆t < 2/ |λ| ≪ 1, i.e., many
time steps in order to see the relevant component of the solution.
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Stiff Equations

Stiff Systems

An ODE or a system of ODEs is called stiff if the solution evolves on
widely-separated timescales and the fast time scale decays (dies out)
quickly.

We can make this precise for linear systems of ODEs, x(t) ∈ Rn:

x′(t) = A [x(t)] .

Assume that A has an eigenvalue decomposition, with potentially
complex eigenvalues:

A = XΛX−1,

and express x(t) in the basis formed by the eigenvectors xi :

y(t) = X−1 [x(t)] .
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Stiff Equations

contd.

x′(t) = A [x(t)] = XΛ
[
X−1x(t)

]
= XΛ [y(t)] ⇒

y′(t) = Λ [y(t)]

The different y variables are now uncoupled: each of the n ODEs is
independent of the others:

yi = yi (0)e
λi t .

Assume for now that all eigenvalues are real and negative, λ < 0, so
each component of the solution decays:

x(t) =
n∑

i=1

yi (0)e
λi txi → 0 as t →∞.

For the forward Euler’s method, we require

∆t <
2

maxi |Re(λi )|
.
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Stiff Equations

Stiffness

A system is stiff if there is a strong separation of time scales:

r =
maxi |λi |
mini |λi |

≫ 1.

For non-linear problems A is replaced by the Jacobian ∇xf(x, t), i.e.,
what matters are the eigenvalues of the Jacobian.

In general, the Jacobian will have complex eigenvalues, so absolute
value above means complex modulus.

For a more in-depth discussion of stiffness, see Section 8.2 in the
book of LeVeque.
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Absolute Stability

Absolute Stability

We see now that for systems we need to allow λ to be a complex
number but we can still look at scalar equations.

A method is called absolutely stable if for Re(λ) < 0 the numerical
solution of the scalar model equation

x ′(t) = λx(t)

decays to zero, like the actual solution.

We call the region of absolute stability the set of complex numbers

z = λ∆t

for which the numerical solution decays to zero.

For systems of ODEs all scaled eigenvalues of the Jacobian λi∆t
should be in the stability region.
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Absolute Stability

Stability regions

For Euler’s method, the stability condition is

|1 + λ∆t| = |1 + z | = |z − (−1)| ≤ 1 ⇒

which means that z must be in a unit disk in the complex plane
centered at (−1, 0):

z ∈ C1(−1, 0).

A general one-step method of order p applied to the model equation
x ′ = λx where λ ∈ C gives:

xn+1 = R(z = λ∆t)xn.

R(z) = ez + O
(
zp+1

)
for small |z | .

The region of absolute stability is the set

S = {z ∈ C : |R(z)| ≤ 1}.
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Absolute Stability

Simple Schemes

Forward/backward Euler, implicit trapezoidal, and leapfrog schemes
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Absolute Stability

A-Stable methods

A method is A-stable if its stability region contains the entire left
half plane.

The backward Euler and the implicit midpoint scheme are both
A-stable, but they are also both implicit and thus expensive in
practice!

Theorem: No explicit one-step method can be A-stable (discuss
in class why).

Theorem: All explicit RK methods with r stages and of order r have
the same stability region (discuss why).
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Absolute Stability

One-Step Methods

Any r -stage explicit RK method will produce R(z) that is a
polynomial of degree r .

Any r -stage implicit RK method has rational R(z) (ratio of
polynomials).
The degree of the denominator cannot be larger than the number of
linear systems that are solved per time step.

RK methods give polynomial or rational approximations R(z) ≈ ez .

A 4-stage explicit RK method therefore has

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4
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Absolute Stability

Explicit RK Methods

Stability regions for all r -stage explicit RK methods

One needs at least 3 stages to be stable for purely imaginary
eigenvalues (hyperbolic PDEs later on).
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Absolute Stability

Transients, damping and oscillations

Stiff equation example from LeVeque with implicit trapezoidal (left) vs.
backward Euler (right)
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Absolute Stability

L-stable methods

We can explain this by noting that for large |z | = |λ∆t| ≫ 1 we have:

R(z) =

{
1

1−z ≈ 0 Backward Euler
1+z/2
1−z/2 ≈ −1 Implicit trapezoidal

So backward Euler damps transients/errors like |λ∆t|−k after k
iterations, while implicit trapezoidal/midpoint just multiplies them by
≈ (−1)k without damping.

A method is L-stable if it is A-stable and it damps fast components
of the solution

lim
z→−∞

|R(z)| = 0.

TR-BDF2 (see RK lecture) is L-stable and second order.

Just because a method is stable doesn’t mean it is accurate.
A higher-order method does not necessarily give a more accurate
solution if the time step is not asymptotically small.
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Absolute Stability

Implicit RK Methods

An implicit RK method of maximum order per number of function
evaluations must generate a Pade approximation, e.g.,

ez ≈

{
1+z/2
1−z/2 Implicit trapezoidal

1+z/3
1−2z/3+z2/6

Fully implicit RK2

The diagonally implicit RK2 (DIRK2) method with tableau

c = [γ, 1− γ] , b = [1/2, 1/2] , A =

[
γ

1− 2γ γ

]
,

is third-order accurate and A-stable for γ = 1
2 +

√
3
6 ,

but is only L-stable for γ = 1±
√
2/2 and second-order.
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Absolute Stability

Implicit Methods

Implicit methods are generally more stable than explicit methods,
and solving stiff problems generally requires using an implicit method.

Beware of order reduction: (DI)RK methods of order larger than 2
can exhibit reduced order of accuracy (usually down to 2nd order) for
very stiff problems even though they are stable (concept of stage
order becomes important also).

The price to pay is solving a system of non-linear equations at every
time step (linear if the ODE is linear):
This is best done using Newton-Raphson’s method, where the
solution at the previous time step is used as an initial guess.

For PDEs, the linear systems become large and implicit methods can
become very expensive...
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Absolute Stability

Implicit-Explicit Methods

When solving PDEs, we will often be faced with problems of the form

dx

dt
= f (x, t) + g (x, t) = stiff+non-stiff

where the stiffness comes only from f.

These problems are treated using implicit-explicit (IMEX) or
semi-implicit schemes, which only treat f (x) implicitly (see HW4 for
KdV equation).

A very simple example of a second-order scheme is to treat g (x)
using the Adams-Bashforth multistep method and treat f (x) using
the implicit trapezoidal rule (Crank-Nicolson method), the ABCN
scheme:

x (k+1) = x (k)+
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x (k+1), t(k+1)

)]
+∆t

[
3

2
g
(
x (k), t(k)

)
− 1

2
g
(
x (k−1), t(k−1)

)]
.
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Conclusions

Which Method is Best?

As expected, there is no universally “best”method for integrating
ordinary differential equations: It depends on the problem:

How stiff is your problem (may demand implicit method), and does this
change with time?
How many variables are there, and how long do you need to integrate
for?
How accurately do you need the solution, and how sensitive is the
solution to perturbations (chaos).
How well-behaved or not is the function f (x , t) (e.g., sharp jumps or
discontinuities, large derivatives, etc.).
How costly is the function f (x , t) and its derivatives (Jacobian) to
evaluate.
Is this really ODEs or a something coming from a PDE integration
(next lecture)?
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Conclusions

Conclusions/Summary

Time stepping methods for ODEs are convergent if and only if they
are consistent and stable.

We distinguish methods based on their order of accuracy and on
whether they are explicit (forward Euler, Heun, RK4,
Adams-Bashforth), or implicit (backward Euler, Crank-Nicolson), and
whether they are adaptive.

Runge-Kutta methods require more evaluations of f but are more
robust, especially if adaptive (e.g., they can deal with sharp changes
in f ). Generally the recommended first-try (ode45 or ode23 in
MATLAB).

Multi-step methods offer high-order accuracy and require few
evaluations of f per time step. They are not very robust however.
Recommended for well-behaved non-stiff problems (ode113).

For stiff problems an implicit method is necessary, and it requires
solving (linear or nonlinear) systems of equations, which may be
complicated (evaluating Jacobian matrices) or costly (ode15s).
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