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1 Intro

These are notes for three workshop meetings that cover background material
for the class Numerical Methods II. I assume a good undergraduate level back-
ground in mathematics, including linear algebra, an idea of an abstract vector
space, complex numbers and exponentials, and multi-variate calculus.

2 Fourier series

Suppose u(x) is a periodic function of x with period L. This means that
u(x + L) = u(x) for all x. Examples of periodic functions are: constants,
sin(2πx/L), cos(2πx/L), sin(4πx/L), etc. A Fourier series representation of a
periodic function is a formula that expresses the function as a sum of these basic
periodic functions:

u(x) = α0 + α1 cos(2πx/L) + β1 sin(2πx/L) + α2 cos(4πx/L) + · · ·

u(x) =

∞∑
k=0

αk cos(2πkx/L) +

∞∑
k=1

βk sin(2πkx/L) . (1)

This expresses u(x) in terms of sines and cosines of higher and higher frequency
as k →∞. Naturally, you should ask:

1. Is this possible?

2. If it is possible, how do you do it?

3. Why do it?

• What do we learn about u from its Fourier coefficients αk and βk?

• What can you learn about differential equations using Fourier series?

• What numerical algorithms rely on Fourier series?

These notes focus on the “how” with only a little on the “why”.
The algebra is simpler using complex exponentials instead of line and cosine.

This is possible because of the Euler formula

eiθ = cos(θ) + i sin(θ) . (2)

With some algebra, this leads to

cos(θ) =
eiθ + e−iθ

2
(3)

sin(θ) =
eiθ − e−iθ

2i
(4)
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Now, write θ = 2πkx/L and substitute into the series (1) and you get an
equivalent representation using possibly complex Fourier coefficients

u(x) =

∞∑
k=−∞

akek(x) , (5)

with
ek(x) = e2πix/L (6)

The real Fourier sine and cosine series has mode number k running from 0 or 1
to infinity without using negative k. The complex exponential Fourier series (5)
(6) requires positive and negative k. This is because the representation formulas
(3) and (4) require e2π2kx/L and e−2πikx/l to represent cos(2πkx/L).

You can think of Fourier series as representing a periodic function as a linear
combination of basis functions that are Fourier modes. The periodic function
u is an element of some vector space and the Fourier modes ek are a basis for
that space. The Fourier sum (5) represents u as a linear combination of basis
vectors. The vector space in “infinite dimensional” because there are infinitely
many linearly independent basis vectors.

The Fourier coefficients ak may not be real even when the target function u
is real. Fourier analysis is often done with complex arithmetic. This is true even
in the computer, where u is replaced by a vector with finitely many components
and the sum is the DFT (for Discrete Fourier Transform). In that case, the
algorithm that computes the discrete Fourier coefficients is the Fast Fourier
Transform or FFT. The FFT packages in Matlab or Python produce complex
numbers ak when presented with real numbers uj . For that reason, we work
with complex vector spaces.

Most readers will have seen some of this material before, but the notation
and precise terminology may have been different. There are many different but
equivalent ways to describe Fourier series and integrals. Whenever someone
uses Fourier analysis, you may have to force them to give the precise definitions
they’re using.

Abstract real and complex vector space

A vector space is a collection of “objects” that can be added and multiplied
by “scalars” (numbers). Specifically, suppose a and b are numbers and u and
v are vectors, then u + v (vector addition) and au (scalar multiplication) are
defined and satisfy the usual laws for these operations, being commutative (i.e.,
u+ v = v + u), associative (i.e., u+ (v +w) = (u+ v) +w, and (ab)u = a(bu)),
distributive (i.e., a(u + v) = au + av, and (a + b)u = au + bu), etc. A vector
space is real or complex depending on whether the scalars are real or complex
numbers.

An inner product on a complex vector space is an operation that produces
a complex number from two vectors. The operation should be bilinear. For
complex vector spaces, this means additive in the vectors, linear or anti-linear
in the scalars, “conjugate symmetric” (dunno the official term) under vector
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exchange, and positive definite. If z = x+ iy is a complex number, the complex
conjugate is z = x − iy, the square norm is |z|2 = zz = x2 + y2, and the real
part is 2x = 2Re(z) = z + z.

〈u, v〉 = a complex number, the scalar product of u and v

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉 (additive in the first argument – also the second)

〈u, v〉 = 〈v, u〉 (conjugate symmetric)

〈au, v〉 = a 〈u, v〉 (anti-linear in the first argument)

〈u, av〉 = a 〈u, v〉 (linear in the second argument)

〈u, u〉 > 0 if u 6= 0 (positive definite)

The norm of a vector is defined using the inner product as ‖u‖ = 〈u, u〉 12 . For
practice with these notations, here is a proof of the Cauchy Schwarz inequality

|〈u, v〉| ≤ ‖u‖ ‖v‖ . (7)

This depends on the inner product being positive definite, which implies that
for any complex number a,

〈u+ av, u+ av〉 ≥ 0 .

The proof chooses a to make the left side small, but it cannot be smaller than
zero. Expanding out using additivity, etc:

〈u+ av, u+ av〉 = 〈u, u〉+ 〈av, u〉+ 〈u, av〉+ 〈av, av〉

= ‖u‖2 + 〈u, av〉+ 〈u, av〉+ aa〈v, v〉

= ‖u‖2 + 2 Re( a 〈u, v〉) + |a|2 〈v, v〉 ≥ 0 .

A trick that makes this expression “more real” is to take the complex number a
to be a = t〈u, v〉, with a real number t. This leads to 2 Re( a 〈u, v〉) = 2t |〈u, v〉|2,

because t and 〈u, v〉〈u, v〉 = |〈u, v〉|2 are real, and |a|2 = t2 |〈u, v〉|2. Thus,

0 ≤ 〈u+ av, u+ av〉 = ‖u‖2 + 2t |〈u, v〉|2 + t2 |〈u, v〉|2 ‖v‖2 .

You minimize over t by differentiating with respect to t, setting the derivative
to zero, and solving for t. The result is

t∗ = − 1

‖v‖2
.

Substitute this in, simplify, and you get

0 ≤ ‖u‖2 ‖v‖2 − |〈u, v〉|2 .

This is the Cauchy Schwarz inequality (7).
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Spaces of sequences are natural examples of real or complex inner product
spaces. The space Cn is the space of sequences of n complex numbers

u = (u1, · · · , un) ∈ Cn , uk ∈ C .

You vector addition and scalar multiplication is “componentwise”. The inner
product is

〈u, v〉 =

n∑
k=1

ukvk .

You can check that this has all the properties of an inner product. [Warning,
some people prefer to take ukvk in the inner product. This would make it
anti-linear in the second vector, not the first.] Vectors as sequences may be
re-interpreted as column vectors

u =

u1

...
un

 .

In that case, the conjugate transpose is the row vector

u∗ = (u1, · · · , un) .

In vector notation, the inner product is

〈u, v〉 = u∗v .

You have to decide whether (u1, · · · , un), is a sequence vector or a row vector,
as the notation is the same.

Any linear subspace of an inner product space is an inner product space.
For example, you could consider the space of sequences whose members add up
to zero.

You could also take spaces of infinite sequences that are square summable.
These are denoted l2(I), where I represents the indexing used for the sequences.
For example, N = {1, 2, · · · } is the set of natural numbers, so think of singly
infinite sequences of the form (u1, u2, · · · ). Such a sequence is in l2(N) if

‖u‖2 =

∞∑
k=1

|uk|2 <∞ . (8)

The inner product is

〈u, v〉 =

∞∑
k=1

ukvk . (9)

The set of all integers is Z = {· · · ,−1, 0, 1, 2, · · · }, and a doubly infinite sequence
has the form doubly infinite sequences of the form u = (· · · , u−1, u0, u1, u2, · · · ).
Such a sequence is in l2(Z) if

‖u‖2 =

∞∑
k=−∞

|uk|2 <∞ .
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The inner product is similar. You might worry that the inner product is an infi-
nite sum that does not converge. Don’t worry. The Cauchy Schwarz inequality
implies that the inner product sum (9) converges if the norm sums (8) converge
for u and v.

The inner product spaces L2(S) are functions of a continuous variable x ∈ S.
You can think of a sequence as a function of the index, k, so this is similar. The
domain, S, may be an interval on the real line, or the whole line, or a region of
n dimensional space. The space L2(S), is1 the set of functions defined for x ∈ S
with

‖u‖2 =

∫
x∈S
|u(x)|2 dx <∞ .

The inner product is

〈u, v〉 =

∫
x∈S

u(x) v(x) dx .

For example, u ∈ L2(R) if u(x) is defined for all real numbers x and if

‖u‖2
∫ ∞
∞
|u(x)|2 dx <∞ .

Again, the Cauchy Schwarz inequality implies that the inner product integral
converges if u and v are square integrable.

A function of x ∈ R is periodic with period L if u(x + L) = u(x) for all x.
The corresponding space of square integrable periodic functions is L2(per). The
inner product is

〈u, v〉per =

∫ L

0

u(x)v(x) dx . (10)

The integral is the same if the integration region [0, L] is replaced by any set
that covers the same points. For example, you get the same answers using a
symmetric interval

〈u, v〉per =

∫ 1
2L

− 1
2L

u(x)v(x) dx .

The space L2(per) is the one that is relevant for Fourier series.

Orthonormal basis

An orthonormal basis for an n−dimensional inner product space, V , is a family
e1, · · · , en with the property

〈ej , ek〉 = δjk =

{
1 if j = k

0 if j 6= k
(11)

1This not strictly true. A class on “real variables” would explain the completely correct
version of these definitions using concepts of measurability and almost everywhere.
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This δjk is the Kronecker symbol. The numbers δjk are the entries of the identity
matrix. If u ∈ V , it can be represented in terms of the basis. Here are the
relevant formulas, which are derived in any (good) linear algebra book

u =

n∑
k=1

akek (12)

ak = 〈ek, u〉 (13)

‖u‖2 =

n∑
k=1

|ak|2 (14)

〈u, v〉 =

n∑
k=1

akbk , if v =

n∑
k=1

bkek . (15)

If V is n−dimensional, any basis has n elements. If e1, · · · , en is an orthonormal
family, then they form a basis.

An infinite dimensional inner product space is one that does not have a finite
basis. The spaces l2 and L2 are infinite dimensional in this sense. For finite
dimensional spaces, you know the vectors ek are a basis if they are orthonormal
and there are enough of them (n of them). In infinite dimensions it is possible
to have infinitely many orthonormal vectors ek that do not form a basis. For
example, if the vectors e1, e2, · · · form a basis, then the set set e2, e3, · · · that
leaves out e1 is not a basis, but it still is an infinite family of orthonormal
vectors. A set of orthonormal vectors is complete if it forms a basis. A complete
family ek satisfies the formulas (12), (13), (14) and (15), provided you sum over
all the k that are the index set for the basis.

Fourier modes

The basic Fourier modes for period L = 1 are the functions

ek(x) = e2πix . (16)

The mode number k can be any integer, positive or negative. These are elements
of the inner product space L2(per) with period L = 1, and you can check that
ek(x+1) = ek(x). Some integration verifies the normalization and orthogonality
relations (11). Keep in mind the basic properties of the complex exponential:

eiθ = cos(θ) + i sin(θ)∣∣eiθ∣∣2 = cos2(θ) + sin2(θ) = 1

e−iθ = eiθ

(because e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ) = cos(−θ) + i sin(−θ))

eiθ eiφ = ei(φ−θ)

e2πim = 1 , if m is an integer .
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For j = k we have

〈ek, ek〉 = ‖ek‖2

=

∫ 1

0

|ek(x)|2 dx

=

∫ 1

0

∣∣e2πix
∣∣2 dx

=

∫ 1

0

1 dx

= 1 .

For j 6= k, we use a derivative identity (two forms of it) that applies for any
p 6= 0:

d

dx
eipx = ipeipx ,

1

ip

d

dx
eipx = eipx . (17)

We write m = k − j and note that m is an integer, with m 6= 0 when k 6= j.

〈ej , ek〉 =

∫ 1

0

ej(x) ek(x) dx

=

∫ 1

0

e2πijx e2πikx dx

=

∫ 1

0

e−2πijx e2πikx dx

=

∫ 1

0

e2πi(k−j)x dx

=
1

2πim

∫ 1

0

d

dx
e2πimx dx

=
1

2πim

[
e2πim − 1

]
= 0

This verifies the fact that the Fourier modes satisfy the orthonormality relations
(11).

Although these simple calculations verify that the Fourier modes are or-
thonormal, there is no equally simple way to verify that they are complete.
Here are some ways to show that Fourier modes are complete. I may write up
the DFT approach later.

• A traditional Fourier series class might use properties of the Fejer kernel.

• Fourier series formulas may be derived from Fourier transform formulas
that are verified by may be proven by integral calculations.

• The discrete Fourier modes are complete because there are n of them in an
n−dimensional space. Fourier series formulas may be proven as n → ∞
limits of DFT (discrete Fourier transform) formulas.
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For now, please just accept the fact that Fourier modes are complete.
Now we can rewrite the orthonormal family formulas as formulas involving

Fourier modes. The expansion formula (12) is

u(x) =

∞∑
k=−∞

ake
2πikx . (18)

The sum on the right is the Fourier series (an infinite sum may be called a
series). The formula is the Fourier series representation of the periodic function
u. Every term on the right is periodic with period L = 1, because k is an
integer. Therefore the sum u(x) also has period 1. It is a less obvious theorem
that “any” periodic function has a Fourier series representation of this form.
That is the completeness theorem for Fourier series.

The numbers ak are the Fourier coefficients. The abstract formula (13) can
be written out concretely for Fourier series as

ak =

∫ 1

0

e−2πikxu(x) dx . (19)

The abstract formula (15) may be written explicitly as∫ 1

0

u(x)v(x) dx =

∞∑
k=−∞

akbk . (20)

In Fourier analysis, this is called the Parseval relation.
There are few periodic functions whose Fourier coefficients can be calculated

directly. Most of them are variations on the step function defined using a step
length r between 0 and 1:

u(x) =

{
1 if 0 ≤ x ≤ r
0 if r < x < 1

The function u itself is periodic, so, for example, u(2+ r
2 ) = 1 and u( r2 −

1
2 ) = 0.

The Fourier coefficients are

ak =

∫ r

0

e−2πikx dx

=
1

−2πik
e−2πikx

∣∣∣r
0

=
1

2πik

[
1− e−2πikr

]
.

A particularly simple case is r = 1
2 . Recall the “Euler formula”

eiπ(odd integer) = −1 .
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This gives ak = 0 if k is even and ak = 1
πik if k is odd. These calculations don’t

apply when k = 0, but the k = 0 Fourier coefficient is

a0 = 〈e0, u〉 =

∫ 1

0

u(x) dx = r .

It is traditional to use Parseval’s formula (20) with this example to derive
interesting sum formula. We take r = 1

2 and u = v. The integral on the left is∫ 1

0

|u(x)|2 dx =
1

2
.

The sum on the right has only odd k terms, except for k = 0, so we write
k = 2j+1 The term with k and −k are the same, so we just double the positive
k terms. The resulting sum is

|a0|2 + 2

∞∑
j=1

|a2j+1|2 =
1

4
+ 2

∞∑
j=1

1

π2(2j + 1)2

Putting these together, with some algebra, leads to

∞∑
j=1

1

(2j + 1)2
=
π2

8
.

This is a famous formula first derived by Euler a different way.
The sine and cosine basis is a possibly more intuitive alternative to the

complex exponential basis. The sine and cosine basis functions are

sk(x) = sin(2πkx) , k = 1, 2, · · ·
ck(x) = cos(2πkx) , k = 0, 1, 2, · · · .

For each k > 0, ck and sk span the same two dimensional subspace as ek and
e−k. More plainly, the Euler relation (2) gives

ek(x) = e2πikx = cos(2πkx) + i sin(2πkx) = ck(x) + isk(x)

e−k(x) = e2πikx = cos(2πkx)− i sin(2πkx) = ck(x)− isk(x)

The equivalent formulas (3) and (4) give the reverse relations

ck =
1

2
ek +

1

2
e−k

sk =
1

2i
ek −

1

2i
e−k

For k = 0, the formula is just c0 = e0 = 1. Therefore, if u has a complex
exponential Fourier series representation (18), then it has a sine and cosine
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representation of the form (1) You can find the coefficients αk and βk from the
ak in the complex Fourier series representation. You also can find them from
orthogonality relations:

〈cj , sk〉 = 0 for all j and k

〈sj , sk〉 = 0 if j 6= k

〈cj , ck〉 = 0 if j 6= k

〈sj , sj〉 =
1

2
if j > 0

〈cj , cj〉 =
1

2
if j > 0

〈c0, c0〉 = 1 .

If you take the inner product 〈c0, u〉 in the sum (1) using these orthogonality
relations, you find

α0 = 〈c0, u〉 =

∫ 1

0

u(x) dx .

If you take the inner product 〈cj , u〉 or 〈sj , u〉 with j > 0 in the sum, you find

αj = 〈cj , u〉 = 2

∫ 1

0

cos(2πjx)u(x) dx

βj = 〈cj , u〉 = 2

∫ 1

0

sin(2πjx)u(x) dx .

These formulas show that the sine and cosine representation of a real periodic
function u involves all real coefficients. You don’t need complex vector spaces
or even complex numbers to do Fourier sine and cosine series of real periodic
functions. The complex version makes the formulas a little simpler (paradox?).

Look at the sine and cosine representation of the step function with r = 1
2 .

If k is positive and odd, then the ek and e−k terms in the complex Fourier
expansion are, with ak = 1

2ik ,

akek(x) + a−ke−k(x) =
1

2ik
e2πikx +

1

−2ik
e−2πikx

=
1

k

1

2i

(
e2πikx − e−2πikx

)
=

1

k
sin(2πkx) .

The k = 0 term is 1
2 as before. Thus, the Fourier sine and cosine representation

involves the constant term, which may be considered to be a cosine term, and
a sum of sine terms corresponding to odd and positive k

u(x) =
1

2
+

∞∑
j=0

1

2j + 1
sin(2π(2j + 1)x) .
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You can get a feel for Fourier series by looking at approximations using the
first few terms. If you take just the constant term, you get the “approximation”

u(x) ≈ 1

2
.

This “approximates” the step function by its mean value. If you keep the j = 0,
k = 1, sine term, the approximation is

u(x) ≈ 1

2
+ sin(2πx) .

This approximation has more in common with the step function in that it is
larger when x < 1

2 where u(x) = 1 and smaller when x > 1
2 . It has overshoot, in

that the maximum of the approximation is 3
2 (at x = 1

4 ). Including the j = 1,
k = 3, term gives the better approximation

u(x) ≈ 1

2
+ sin(2πx) +

1

3
sin(6πx) .

The extra term lowers the overshoot at x = 1
4 from 3

2 to 7
6 .

Efficiency of the Fourier series representation

An infinite sum representation such as (18) is efficient if you get an accurate
approximation with a small number of terms. We just saw that the Fourier
expansion of the step function is not very efficient. Keeping just three terms
gives a poor approximation to the step function. We will see that with u(x)
is smooth then the Fourier series expansion is efficient. How efficient depends
on the degree of smoothness. The efficiency come s from the fact that Fourier
coefficients (19) of a smooth function go to zero rapidly as |k| → ∞. How
rapidly depends on the degree of smoothness. The step function is not smooth
and its Fourier coefficients go to zero slowly.

In Fourier analysis, saying u is smooth means that it has some bounded
derivatives. The more derivatives are bounded, the smoother the function. The
relation between bounded derivatives and decay of Fourier coefficients can be
seen using integration by parts and the differentiation formula (17). For exam-
ple, u has one bounded derivative means that there is a bound, M , so that∣∣∣∣ ddxu(x)

∣∣∣∣ ≤M , for all x .

In this case, the Fourier coefficients of u with k 6= 0 have

ak =

∫ 1

0

e−2πikx u(x) dx

=
1

−2πik

∫ 1

0

(
d

dx
e−2πikx

)
u(x) dx

=
1

2πik

∫ 1

0

e−2πikx d

dx
u(x) dx
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The boundary terms in integration by parts cancel because the integrand is
periodic. This leads to the ineqality

|ak| ≤
1

2π |k|
M .

To see this,∣∣∣∣∫ 1

0

e−2πikx d

dx
u(x) dx

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣e−2πikx d

dx
u(x)

∣∣∣∣ dx =

∫ 1

0

∣∣∣∣ ddxu(x)

∣∣∣∣ dx = M .

You can repeat this argument using more derivatives. Suppose u has n bounded
derivatives and ∣∣∣∣ dndxnu(x)

∣∣∣∣ ≤M , for all x .

Then

|ak| ≤
M

(2π |k|)n
. (21)

Larger n is what we mean by “more smoothness”. Larger n in (21) implies that
ak decays to zero faster.

You will notice that the bound (21) is not sharp in the sense that ak may
go to zero faster than the bound requires. For example, this reasoning applied
to the step function example (with no smoothness) would not suggest even that
ak → 0 as |k| → ∞. Issues like this in Fourier analysis can be deep and technical.

How is decay of Fourier coefficients related to efficiency? Write uN (x) for
the partial sum of the Fourier series with terms up to |k| = N .

uN (x) =

k=N∑
k=−N

ake
2πikx .

Let vN (x) be the remainder

vN (x) = u(x)− uN (x) =
∑
|k|>NN

ake
2πikx .

Then u ≈ uN if vN is small. A inequality related to this is that uses the
smoothness coefficient bound (21) is

|vn(x)| ≤ 2

∞∑
k=N+1

M

(2π|k|)n

≤ 2M

(2π)n

∫ ∞
N

s−n ds

|vn(x)| ≤ 2M

(2π)n(n− 1)

1

Nn−1
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The complicated constant on the right is not so important, especially because
the inequalities are not sharp. The important thing is that the power of N gets
better (faster decay to zero) as the degree of smoothness, n, increases.

We just saw that if a function is smooth then its Fourier coefficients decay
rapidly. This goes both ways. If the Fourier coefficients decay rapidly then the
function is smooth. You can differentiate the Fourier series representation(18)
term by term to get the Fourier series representation of the derivative:

d

dx
u(x) =

∞∑
k=−∞

2πikake
2πikx . (22)

This shows that the Fourier coefficients of d
dxu are found by multiplying the

Fourier coefficients of u by the symbol, 2πik. If the Fourier coefficients of u
decay like a power of k, then the coefficients of d

dxu decay like a power, one less,
since

|ak| ≤ C |k|−n =⇒ |2πikak| ≤ C ′ |k|−(n−1)

The Fourier coefficients of the derivative still decay rapidly, but not as rapidly.

Period and wave number

Suppose u is periodic with period L 6= 1. The corresponding Fourier series rep-
resentation involves basis functions (6). We use the inner product (10) for period
L. The orthogonality relation for these basis function in this inner product are

〈ej , ek〉 = Lδjk .

A period L Fourier series representation (5) for u may be written out explicitly
as

u(x) =

∞∑
k=−∞

ake
2πikx/L .

The orthogonality relations give formulas for the coefficients:

〈ej , u〉 = Laj

aj =
1

L

∫ L

0

e−2πikx/Lu(x) dx .

Fourier analysis is used to understand differentiation and differential equa-
tions, which is the reason this Crash Course on PDE” starts with Fourier anal-
ysis. The differentiation formulas for Fourier modes, as you can see in (17) are
simple when expressed in terms of p, which is the wave number. The Fourier
mode ek, see (6), has wave number

pk =
2πk

L
.

13



The wave number is an eigenvalue of the “differentiation operator” in the sense
that

d

dx
ek = pkek . (23)

The wavelength of ek is its period, which is the smallest number Lk so that
ek(x+ Lk) = ek(x). Plug into (6), and you see

Lk =
L

k
=

2π

pk
.

A “long wave” has Lk large and pk small. A large wave number wave is the
opposite: large p and small L.

Much PDE intuition is expressed in terms of wave number and wavelength.
For example, in the heat equation large wave number modes decay quickly
(explanations in the next session). This implies that the solution has mostly
small wave number modes, which have small derivatives. The overall solution,
which is a Fourier sum of the modes that have not decayed away, has a derivative
that is not large, and definitely no discontinuities.

More subtle is systems that are dispersive. This means, roughly, that waves
with different wave number move at different speeds. Roughly speaking, many
modes much be at the same place to add up to a clean discontinuity. If different
modes move at different speeds, the discontinuity can break up into a sequence of
oscillations with different wave numbers. This happens in physical systems such
as water waves. It also happens in numerical systems that approximate PDEs.
An advection equation is a kind of PDE that preserves discontinuities. But some
numerical approximations have dispersion that causes the discontinuity in the
numerical solution to break apart into a sequence of waves.

The gap between neighboring wave numbers is (because pk+1−pk = p1−p0 =
p1)

∆p = pk+1 − pk =
2π

L
. (24)

The wave numbers are more closely spaced when the interval, L, is larger. In
the limit L → ∞ the gap between wave numbers goes to zero and the Fourier
sum converges to the Fourier integral. You can give an informal derivation of
the Fourier integral formulas from the Fourier series formulas using a scaling
change of variables. Suppose u(x) is not periodic but goes to zero as |x| → ∞
(think of u(x) = e−x

2

). Replace this by a periodic function uL(x) with period
L by taking uL(x) = u(x) if |x| ≤ l

2 . Then define uL(x) “by periodicity”, just

repeating uL(x) over each period of length L. If |x| < L
2 , the Fourier series

formula for the periodic function uL apply to u as well. The dependence on L
is included because L will be changing.

u(x) =

∞∑
k=−∞

ak(L)e2πikx/L (25)

ak(L) =
1

L

∫ L
2

−L
2

e−2πikx/Lu(x) dx . (26)
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We define a re-scaled Fourier coefficient written in terms of the wave number
pk rather than the mode number k:

ûL(pk) = Lak(L) =

∫ L
2

−L
2

e−ipkxu(x) dx .

The factor of L is so that the L → ∞ limit exists. In the limit, p can be any
real number and the integration domain is the whole real axis. The resulting
û(p) is the Fourier transform of u.

û(p) = lim
L→∞

∫ L
2

−L
2

e−ipxu(x) dx =

∫ ∞
−∞

e−ipxu(x) dx . (27)

We re-write the Fourier series (25) in terms of ûL(pk) as

u(x) =
1

L

∞∑
k=−∞

ûL(pk) eipkx .

This is exactly equivalent to (25) and it holds only for |x| < L
2 . The range of

validity grows to become all x in the limit L → ∞. Next, write 1
L in terms of

∆p using (24). This gives

u(x) =
1

2π

[
∆p

∞∑
k=−∞

ûL(pk) eipkx

]
(28)

The quantity in square brackets [· · · ] is ∆p trapezoid rule approximation to the
integral. The limit L→∞ is equivalent to ∆p→ 0, so

lim
∆p→0

∆p

∞∑
k=−∞

ûL(pk) eipkx =

∫ ∞
p=−∞

û(p) eipx dp .

The L → ∞ and ∆p → 0 limit of the Fourier series formula (28) is called the
Fourier inversion formula.

u(x) =
1

2π

∫ ∞
p=−∞

û(p) eipx dp . (29)

Bullet points:

• The Fourier inversion formula represents a general function u as an integral
of complex exponentials eipx with coefficients û(p). This is analogous to
the Fourier series representation (18) for periodic functions.

• The sum (18) goes to an integral in the L → ∞ limit because ∆p → 0,
which means that all wave numbers are allowed when the interval is infinite
while the L <∞ case uses only the discrete set of wave numbers pk = k∆p.

• The integral that defines the Fourier coefficients in the finite L case, re-
scaled by a factor of L, converges to the Fourier transform integral (27).

• The formula that represents u in terms of û “inverts” the Fourier transform
integral (27), so it is called the inversion formula.
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Conventions

There are many versions the Fourier series and Fourier transform formulas.
Much of the diversity involves the 2π factors. For example, you can define the
Fourier transform and Fourier inversion formula pairs as

û(p) =
1

2π

∫
e−ipxu(x)dx

u(x) =

∫
eipxû(dp)dp

or

û(p) =

∫
e−2πipxu(x)dx

u(x) =

∫
e2πipxû(dp)dp

or

...
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