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1 Introduction

The first two sessions were largely mathematical rather than physical. But our
interest in PDE may come (depending on the person) from their use in modeling
physical systems. Section II (last week) gave an example of the derivation of
a PDE as a continuum limit. Many other PDEs are derived in this way. This
session will focus on another kind of reasoning used to derive a PDE, the use
of local conservation laws and constitutive relations to find fluxes (also called
currents) of the locally conserved quantities. These flux formulations of PDEs
are often used to design numerical solution algorithms.

This session also describes the behavior of solutions of some PDEs through
explicit solutions of simplified PDEs (linearized, constant coefficient, one di-
mensional, etc.). Solutions of “real” problems (without analytical solution)
have qualitative behavior seen in these model problems. Therefore, the model
problems are a guide to solution strategies for real problems.

2 Diffusion fluxes and equations

Notation

In this session, x will be a one component position variable, often called the
“space” variable. We will do PDEs only in one dimension. As before t is time
and a dot over a quantity is the time derivative of that quantity. Densities will
be called ρ or u or something like that. These will be functions of x and t and
will satisfy PDEs. The flux of a quantity q will be called Fq. The amount of
quantity q in an interval a ≤ x ≤ b will be

Mq(t, a, b) =

∫ b

a

q(x, t) dx . (1)

M is for “mass”, which is what Mρ represents if ρ represents mass density, but
if q is not ρ then Mq could be the total momentum or the total energy, etc.

Diffusion of a substance

Imagine a small drop of color (food color or ink) at the bottom of a glass of
still water. Over time, the drop will slowly spread throughout the water until
the color becomes uniform. This is not easy to do “at home”, which may
explain why the Youtube videos I found of food color diffusion in water all
involved more complicated processes of gravity (buoyancy) and motion in the
water (advection). Here is a description of simple diffusion of a substance such
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as food color in a one dimensional “glass” of “water”. You might think of this
1D (one dimensional) water as filling a long think straight glass tube. We let
ρ(x, t) be the density1 of color at location x at time t. Then (1) gives M(t, a, b)
as the amount of color between a and b at time t.

We derive a PDE for ρ(x, t) by first finding a model for Ṁ . The main idea is
that color enters of leaves the interval [a.b] only be crossing one of the boundary
points a or b. We need a model for these rates. These rates are fluxes or
currents, F (x, t). The flux F (a, t) represents the net rate at which color crosses
from x < a to x > a per unit time. A positive flux at a, F (a, t) > 0, encourages
M(t, a, b) to increase while positive flux at b encourages M to decrease:

Ṁ(t, a, b) = −F (b, t) + F (a, t) . (2)

This is a local conservation law, which expresses the model assumption that
color can move but it is not created or destroyed. Moreover, color moves without
“jumping” over boundaries. It must cross x = a to go from x < a to x > a.

The conservation relation (2), by itself, does not describe the dynamics of
M or ρ completely. We also need a constitutive relation that specifies the flux
F in terms of the color distribution. This is more detailed physical modeling,
beyond the generic local conservation assumption (2). Fick’s law is an “entry
level” constitutive model. It says that color “flows” from regions of high color
density to regions of lower density at a rate that is proportional to the color
density gradient. We write D for the constant of proportionality, and assume
it’s positive. The flux, according to Fick’s law, is

F (x, t) = −D∂xρ(x, t) . (3)

The diffusion coefficient is a physical property of the water and the color material
that is determined by microscopic physics. If the molecules of color die are large,
they diffuse slowly, which would be reflected in a small D. A small D means
that it takes a large gradient ∂xρ to achieve a given flux F .

The conservation equation (2) and Fick constitutive law (3) are enough to
give a PDE for the evolution of ρ. A first step is to write a local and differential
form of the conservation relation (2). Both sides of (2) may be expressed as
integrals, one side using (1) and the other side using basic calculus:

d

dt

∫ b

a

ρ(x, t) dx =

∫ b

a

∂t ρ(x, t) dx = −
∫ b

a

∂xF (x, t) dx .

If ρ and F are continuously differentiable, and if this holds for all t and arbitrarily
small intervals [a, b], then it must hold “pointwise” for every x and t:

∂tρ(x, t) = −∂xF (x, t) . (4)

The local (and differential) conservation relation (4) is equivalent to the global
(and integral) form (2), provided that ρ and F are sufficiently differentiable.

1Technically, this is the volumetric density, of the amount per unit volume, rather than
the specific density, which is the amount per unit of water. Unit “volume” is unit length in a
1D problem.
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Like global conservation, local conservation is a basic physical principle that
does not depend on specific physical properties of the materials (constitutive
relations).

The final PDE is found by combining the local conservation relation (4) with
the constitutive law, which is Fick’s law (3) in this case. The result is

∂tρ(x, t) = D∂2
xρ(x, t) . (5)

This is “the” heat equation, or “the” diffusion equation, depending on whether
you’re modeling heat flow (see below) or diffusion (as in the present diffusion of
color die).

The mathematics of the equation and qualitative properties of the solution
of this PDE do not depend on what’s being modeled. In particular, if there are
boundaries at a and b, and if the boundary conditions cooperate (see below),
there is a dissipation relation

d

dt

1

2

∫ b

a

ρ(x, t)2 = −D
∫ b

a

(∂xρ(x, t))
2
dx . (6)

This had a physical interpretation when we interpreted the unknown as modeling
displacements of a chain of masses connected by springs. Here, it may not be
clear how to interpret the square of the density on the left side, or whether to
interpret the integrand on the right as the square of the flux. Depending on
the boundary conditions, it may be possible to express the solution as a sum of
modes.

Boundary conditions

The most common boundary conditions for diffusion problems are Dirichlet2

and Neumann.3 Dirichlet boundary conditions are

ρ(a, t) = 0 , ρ(b, t) = 0 . (7)

These would apply in diffusion of color if there were something at the ends that
absorbs color (maybe a form of chemical glue?). This can happen in diffusion
problems when there is a chemical reaction that consumes the substance that’s
diffusing, where the reaction happens only at the boundary. The catalytic con-
verter in a car is like this – a chemical you don’t want released into the air reacts
with a material on the wall, palladium is common.

Neumann boundary conditions are

∂xρ(a, t) = 0 , ∂xρ(b, t) = 0 . (8)

They would apply for diffusion in a tube if the ends were closed. Closed ends
means there is no flux in or out of the tube, which is F (a, t) = F (b, t) = 0.

2The traditional American pronunciation: starts with “dear”, continues with “ish” as in
“wish” and ends with “sleigh”.

3The traditional American pronunciation starts with “oy” as in “boy”, so “Neu” sounds
like the end of “annoy”. It ends with “on” as in the end of “coupon”.
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Fick’s law (3) relates the flux to the derivative. You can check using integration
by parts as last week that the “energy identity” (6) applies with either Dirichlet
or Neumann boundary conditions.

The solution is different for different boundary conditions. We saw last week
that with Dirichlet boundary conditions, ρ(x, t) → 0 exponentially as t → ∞.
This is impossible with Neumann boundary conditions if the initial data ρ(x, 0)
are positive, because the total amount of color (whatever is diffusing) cannot
change if the flux is zero at the ends:

d

dt

∫ b

a

ρ(x, t) dx = −F (b, t) + F (a, t) = 0 .

Fundamental solution

If the initial data is ρ(x, 0) = δ(x − x0), then the solution is called the fun-
damental solution, and may be written G(x, x0, t). This is the solution to the
diffusion problem is you start with no color anywhere except for a concentration
at the point x0. The fundamental solution, like any other solution, depends on
the boundary conditions. Thus, there are Dirichlet and Neumann functional
solutions. The simplest one is the “free space” fundamental solution, which we
call G0(x, x0, t).

The solution to any initial value problem can be expressed as an integral in-
volving the fundamental solution. You can think of an initial distribution ρ(x, 0)
as being small “drops” of stuff at each point x0, with ρ(x0, 0) being the size of
the drop. Since the PDE is linear, the solution for all these drops (infinitely
many infinitely small drops) is the sum of the solutions for the individual drops.
That is

ρ(x, t) =

∫ b

a

G(x, x0, t) ρ(x0) dx0 .

All this is a little vague, but it is supposed to explain “what’s going on”.
The free space fundamental solution for the diffusion equation (5) with x0 = 0

is

G0(x, t) =
1√

4πDt
e−

x2

4Dt . (9)

The term free space means there are no boundaries or boundary conditions. The
function G0 is defined for all x. The term fundamental solution refers to the fact
(explained below) that any solution may be expressed in terms of G0 through
an integral. There are different fundamental solutions for different domains
and boundary conditions, but the formulas for them are more complicated, and
most of them are sums involving G0. In this sense, the free space fundamental
solution is the most fundamental solution. We first explain some properties of
this formula, then we explain how they help understand solutions of the diffusion
equation
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• It is a solution. The time derivative is

∂t

[
1√

4πD
t−

1
2 e−

x2

4D t
−1

]
=

1√
4πD

[
−1

2
t−

3
2 + t−

1
2
x2

4D
t−2

]
e−

x2

4D t
−1

=
1√

4πD

1

2t
3
2

[
x2

2Dt
− 1

]
e−

x2

4Dt (10)

The space differentiation calculation is

1√
4πDt

e−
x2

4Dt
∂x−→ 1√

4πDt

[
− x

2Dt
e−

x2

4Dt

]
∂x−→ 1√

4πDt

[
x2

4D2t2
− 1

2Dt

]
e−

x2

4Dt

=
1√

4πD

1

2t
3
2

1

D

[
x2

2Dt
− 1

]
e−

x2

4Dt (11)

Compare the results (10) and (11), and you see that ∂tG0 = ∂2
xG0. This shows

that G0 satisfies the diffusion equation (5).
• It integrates to 1. The basic Gaussian integral formula is∫ ∞

−∞
e−y

2

dy =
√
π .

Putting in a scaling y2 = az2, or z =
√
a y gives (

√
a goes “downstairs” because

the integral is smaller when a is larger)∫ ∞
−∞

e−az
2

dz =

√
π

a
.

Take a = 1
4Dt and you get ∫ ∞

−∞
e−

x2

4Dt dx =
√

4πDt .

Therefore the free space fundamental solution (9) satisfies∫ ∞
−∞

G0(x, t) dx = 1 .

The total mass of G0 is 1.
• It is localized. The quadratic exponential e−y

2

converges to zero rapidly as
|y| → ∞. The factor 1

4Dt in the exponent of (9) makes it converge to zero faster
when t is smaller. “Clearly” (you can convince yourself in a few minutes) this
implies that most of the unit mass of G0 is concentrated near x = 0 when t is
small. For example, the mass farther than ε from x = 0 disappears as t→ 0:∫

|x|>ε
G0(x, t)dx→ 0 as t→ 0 .
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If you want the solution of the diffusion equation to be the fundamental solu-
tion, you have to take initial data that consists of a unit amount of stuff all
concentrated at the point x = 0. This density “function” is called the delta
function and it is written G0(x, 0) = δ(x). The delta function, or the delta
“distribution” is the most localized any distribution can be.
• It is not localized. The fundamental solution is the distribution that results
from initial data putting a unit amount of stuff (color) at x = 0 at time 0. Then
you watch it diffuse. At any positive time t > 0, the density of stuff at x, which
is G0(x, t), is positive. This is true no matter how far x is from the source point
x = 0 or how little time has passed. Diffusion allows stuff to move arbitrarily
quickly. The localization comes not from G0(x, t) being equal to zero, it isn’t.
It comes from G0(x, t) being very small when x is large or t is small. If x is
large or t is small, the approximation G0(x, t) ≈ 0 may be accurate enough.

If ρ(x, t) satisfies the diffusion equation for all x and all t ≥ 0 with initial data
ρ(x, 0) given, then the solution at later time may be expressed as an integral
involving the fundamental solution

ρ(x, t) =

∫ ∞
−∞

G0(x− x0, t) ρ(x0, 0) dx0 . (12)

Informally, this means that whatever stuff (color) started at x0 at time t = 0
diffuses according to the fundamental solution. The density at x at time t is the
sum (integral) of the density at x at time t that came from x0 at t = 0. The
points x0 close to x contribute a larger share. More formally, you can check
that the fundamental solution representation formula (12) satisfies the diffusion
equation (differentiate under the integral sigh with respect to x and t and use
the fact that G0 is a solution). You can check that ρ(x, t) → ρ(x, 0) as t ↓ 0
because G0 is localized.

The fundamental solution representation formula provides a way to see some
properties diffusion processes. One is smoothing. The solution ρ(x, t) is a differ-
entiable function of x if t > 0 even if the initial data ρ(x, 0) has discontinuities.
As a mathematical argument for this, you can see that ∂x applied to the left
side results in ∂x being applied to G0 on the right side, and G0 is a differen-
tiable function of x. We saw the smoothing effect in a different way last week
using the decay of Fourier series coefficients when t > 0. These approaches are
complementary.

3 Advection

Advection and convection refer to material (color) or heat being transported by
moving fluid (air or water or some other liquid or gas). A simple model of
advection in 1D has an advection velocity, u(x), that carries stuff with it. You
can write a PDE for this using the advective flux

F (x, t) = u(x) ρ(x, t) . (13)
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This says that the rate at which stuff crossed a specific point x at time t is
proportional to the density and to the advection velocity. The local conservation
relation (4) then gives ∂tρ = −∂x(uρ). This is traditionally written with this
with the “advection term” on the other side:

∂tρ(x, t) + ∂x[u(x)ρ(x, t) ] = 0 . (14)

This is “the” advection equation.
The advection equation with a constant advection velocity u(x) ≡ u has

simple solutions that illustrate the solution of more complicated advection equa-
tions. With a constant u, it comes out of the differentiation, leaving

∂tρ+ u∂xρ = 0 . (15)

In the two dimensional time-space space, the left side represents directional
derivative in the direction (1, u), as in

[ 1 · ∂t + u · ∂x ] ρ(x, t) = 0 .

This means that ρ is constant in the (1, u) direction. Lines in the (1, u) direction
are characteristic lines. The characteristic line that starts at x0 when t = 0 is
given by x = x0 + ut. The constant velocity advection equation implies that ρ
is constant on these characteristic lines. Therefore, the value of the solution at
a point (x, t) is determined by its value on the same line at t = 0. This leads to
the formula

ρ(x, t) = ρ(x− ut, 0) . (16)

You can check by direct differentiation that this characteristic solution formula
(16) satisfies the constant velocity advection equation (15) and has the right
initial conditions.

The characteristic line solution formula (16) implies that, for constant veloc-
ity advection, the density function ρ is carried (“advected”) by the velocity at
speed v without changing shape. Unlike diffusion, advection does not smooth
discontinuities. If ρ(x, 0) is discontinuous at x0, then ρ(x, t) is discontinuous at
x0 + ut.

Advection and diffusion together

Suppose the “stuff” is diffusing as it is being advected. You can model this by
writing the flux as a sum of sdvective and diffusive fluxes. These are as given in
(13) and (3):

Ftot = Fad + Fdiff = uρ−D∂xρ . (17)

This leads to the advection diffusion equation. By tradition, the terms corre-
sponding to advection and diffusion are on opposite sides of the equation;

∂tρ(x, t) + ∂x [u(x) ρ(x, t) ] = D∂2
xρ(x, t) . (18)
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If the advection velocity is constant, there is a fundamental solution to the
advection diffusion problem (18) that corresponds to the fundamental solution
of the pure diffusion equation being advected with velocity u:

ρ(x, t) = G0(x− ut− x0, t) =
1√
4Dt

e−
(x−ut−x0)2

4Dt . (19)

This what advection and diffusion produce if you start with a unit mass at
x0. The density field ρ “advects” with speed u while it diffuses with diffusion
coefficient D. A peak in the initial density moves by advection while spreading
by diffusion.

Variable speed advection

The problem of “pure” advection (no diffusion) with variable speed has a semi-
explicit solution in terms of characteristic curves. These curves add mathemat-
ical complexity, and there is a physical complexity related to compression or
“rarefaction” (spreading) that comes from conservation together with a vari-
able advection speed.

Qualitatively, suppose u(x) > 0 when x < 0 and u(x) < 0 when x > 0.
This means that the “wind” (advection velocity) is “blowing” to the right if
x < 0 and to the left when x > 0. That means the stuff with density ρ(x, t) is
being concentrated near x = 0. This causes ρ to increase. The density, ρ must
increase if the same amount of stuff is concentrated in smaller regions of space.

The math of characteristic curves gives formulas that describe this picture.
We write ξ(t, x0) for the characteristic curve that moves with speed u and starts
at x0 at t = 0. In formulas,

ξ̇(t, x0) = u(ξ(t, x0)) , ξ(0, x0) = x0 .

At a point x, t, the compression rate is4

r(x) = −∂xu(x) .

“Compression” corresponds to r > 0 and anti-compression, or “rarefaction”
corresponds to r < 0. If r > 0, the characteristic curve at x + ∆x has speed
u(x+∆x) ≈ u(x)−r(x)∆x < u(x). That is, the curve “in front” at x+∆x moves
more slowly than the one at x. This makes the curves come closer together.
Similarly, r < 0 implies that curves are spreading apart.

Variable speed advection has the property that the total mass between two
characteristic curves does not change with time. That corresponds to the stuff
being “passively” advected by the velocity field u. Consider the characteristic
curves ξ(t, x0) and ξ(t, x1) starting at x0 < x1. Characteristic curves cannot
cross because their velocity is determined by their position. so the curve trying

4It might be better to call this c(x) rather than r(x), for “compression rate”. We use r
because c(x) is often used for the advection velocity, which we call u(x).
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to cross from the left cannot go faster than the curve it’s trying to cross.5 The
mass between these curves at time t is the integral of the density, as in (1):

M(t, x0, x1) =

∫ ξ(t,x1)

ξ(t,x0)

ρ(x, t) dx .

When you differentiate with respect to t, there are terms corresponding to the
fact that the boundaries (endpoints) are moving. Increasing the lower bound-
ary makes the integral decrease by an amount proportional to ρ at the lower
boundary. Increasing the upper boundary makes the integral increase. The
calculation uses this, together with the “conservation form” advection equation
(18):

d

dt
M(t, x0, x1) = −ξ̇(t, x0) ρ(ξ(t, x0), t) + ξ̇(t, x1) ρ(ξ(t, x1), t)

+

∫ ξ(t,x1)

ξ(t,x0)

∂tρ(x, t) dx

= −u(ξ(t, x0)) ρ(ξ(t, x0), t) + u(ξ(t, x1)) ρ(ξ(t, x1), t)

+

∫ ξ(t,x1)

ξ(t,x0)

∂x [u(x) ρ(x, t) ] dx

= 0 .

Since M is the integral of ρ over an interval between characteristics, and since
M doesn’t change, if the interval gets smaller then the integrand (the density)
must get bigger.

Nonlinear problems

The equations listed so far are linear but the problems solved on the computer
are likely to be non-linear. Section 4 gives and example of a nonlinear PDE. But
even without that complexity, an advection diffusion equation could be nonlinear
if the diffusion coefficient depends on ρ. This might happen, for example, if ρ
represents heat. Heat diffusion coefficients (usually called “heat conduction”
coefficients) may be temperature dependent. Diffusion coefficients can depend
on concentration, etc. Most phenomena present in linear problems also appear
in nonlinear problems, but some things happen in nonlinear problems only.

4 Acoustics

Acoustics refers to propagation of sound. Sound can propagate in air, in water,
and in solids. A PDE that models acoustics should explain how the speed of

5Feel free to write a more mathematical version of this argument. For example, if curves
would cross, then there would be a t∗ with ξ(t∗, x0) = ξ(t∗, x1). The uniqueness theorem for
ODE solutions would imply that ξ(t, x0) = ξ(t, x1) for all t.

9



sound arises from material properties of the medium (air, water, ..) the sound
is propagating in. It should explain why sound propagates at a finite speed
(unlike diffusion).

You can find sound propagation in a model of a one dimensional motion
of a compressible gas (air). A simple model6 involves dynamical distributed
parameters ρ(x, t), the density of the gas, and v(x, t), the velocity. The picture
is that air at a point (x, t) has density ρ(x, t) and is moving with velocity v(x, t).
We rely on local conservation principles for mass and momentum. The mass
between points a and b is (sorry for the terrible notation)

Mq(a, b, t) =

∫ b

a

ρ(x, t) dx .

The momentum density is ρ(x, t)v(x, t). The amount of momentum between x
and x+ ∆x is the mass in that interval, which is approximately ρ(x, t)∆x, and
the velocity of that mass, which is v(x, t). The momentum, being mass×velocity,
is approximately ρ(x, t)v(x, t)∆x. You get the total momentum between two
points by integrating the momentum density

Mp(a, b, t) =

∫ b

a

ρ(x, t) v(x, t) dx .

There are local fluxes corresponding to each locally conserved quantity, which
will are the mass flux, Fq, and the momentum flux, Fp.

The mass flux is the same as it was for advection. The rate of stuff (gas)
crossing a point is the product of the density and the velocty

Fq(x, t) = ρ(x, t)v(x, t) .

The momentum flux is more subtle. There are two ways momentum can cross
a point, advection of momentum and pressure. The advection of momentum
comes from the fact that gas crossing a point carries momentum with it. The
flux of advected momentum is the momentum density multiplied by the velocity.
The momentum density (as explained above) is ρ(x, t)v(x, t), so the advection
momentum flux is (ρ(x, t)v(x, t))v(x, t) = ρ(x, t)v2(x, t).

The “physics” of this gas dynamics model is the model of p(x, t), the pressure
at (x, t). Pressure is a force that one part of a gas applies to the part next to it
or to the ends of a tube or the boundary if it’s more than one dimensional. For
example, in a balloon, the pressure of the gas inside pushing out on the rubber
of the balloon is balanced by the force of the stretched rubber pushing in on
the gas, and the lower pressure of the gas outside. Weather balloons expand as
the rise because the outside pressure decreases. We saw that force is the rate
of change of momentum. Therefore d

dtMp(a, b, t) should have contribution from
pressure at a and b. To get the signs right. A high pressure at a makes the
momentum on the right “want to” increase and the pressure on the left makes

6This model is wrong is its basic physics. However, “all models are wrong, some models
are useful” – George Box.
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it want to decrease. The flux corresponding to pressure is just p(x, t). Thus,
the total momentum flux is

Fp(x, t) = ρ(x, t)v2(x, t) + p(x, t) .

The local conservation law in differential form for the mass is

∂tρ(x, t) + ∂xFq(x, t) = 0

∂tρ(x, t) + ∂x [ ρ(x, t)v(x, t) ] = 0 .

The physics in this formula is only local conservation of mass and the model that
a gas has a local density and velocity. The momentum density is ρ(x, t)v(x, t),
and the differential form of the local conservation of momentum is

∂t [ ρ(x, t) v(x, t)] + ∂xFp(x, t) = 0

∂t [ ρ(x, t) v(x, t)] + ∂x
[
ρ(x, t) v2(x, t) + p(x, t)

]
= 0 .

This is as far as we can go without making a more detailed model of the local
properties of a gas.

The assumption of simple gas dynamics is that there is a thermodynamic
relation so that the pressure at a point is a function of the density at that point.
We write this (with some conflict of notation) as

p(x, t) = p(ρ(x, t)) .

The basic assumption is that the pressure is an increasing function of the density.
This allows us to write

c2(ρ) =

√
dp

dρ
> 0 . (20)

The final equations of compressible gas dynamics are

∂tρ(x, t) + ∂x [ ρ(x, t)v(x, t) ] = 0 (21)

∂t [ ρ(x, t) v(x, t)] + ∂x
[
ρ(x, t) v2(x, t) + p(ρ(x, t))

]
= 0 . (22)

The equations may be more clear if we leave out the (x, t) arguments

∂tρ+ ∂x (ρv) = 0

∂t(ρv) + ∂x
(
ρv2 + p(ρ)

)
= 0 .

These equations are nonlinear and we won’t be able to analyze them much by
formulas.

Linear acoustics

Linear acoustics is a linear approximation to the nonlinear conservation law
equations (21) and (22). For this, we assume a “small disturbance” about still
air, where “still air” means ρ(x, t) = ρ0 = constant, and v(x, t) = 0. Note
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that constant ρ and v is a (trivial) solution to the dynamical equations. The
small disturbance is ερ̃ and εṽ. The total density, background and disturbance
is ρ(x, t) = ρ0 + ρ̃(x, t).

We find the linearized equations by substituting in the small disturbance
assumption and approximating all the terms including terms of order ε but
dropping terms of order ε2 or higher. For example, the flux in the mass conser-
vation equation is

ρv = (ρ0 + ερ̃)εv = ρ0 + ερ0ṽ +O(ε2) .

This is also the momentum density (first term on the right of the momentum
conservation equation (22)). The momentum flux is (using (20))

ρv2 + p(ρ) = (ρ0 + ερ̃)ε2ṽ + p(ρ0) + εc2(ρ)ρ̃+O(ε2)

= p0 + εc20ρ̃+O(ε2) .

Here p0 = p(ρ0) and c0 = c(ρ0). We substitute this into the conservation laws.
The constant terms drop. We keep the O(ε) terms:

∂tρ̃+ ρ0∂xṽ = 0 (23)

ρ0∂tṽ + c20∂xρ̃ = 0 . (24)

These are the equations of linear acoustics, for one dimensional sound propaga-
tion.

Propagation modes

The linear acoustics equations (23) and (24) have solutions that look like so-
lutions of the constant velocity advection equation. They move with speed s
without changing shape. Unlike advection, there are two propagation speeds,
s±. There are two distinct propagation modes. It turns out that s± = ±c0.
Thus, c0 is the speed of sound, and sound may propagate at speed c0 either in
the positive or negative directions.

There are several ways to do this kind of analysis. Here is a way that
generalizes to many more complicated wave propagation systems. We write the
pair of equations in matrix/vector form. We define the vector solution

u(x, t) =

(
ρ̃(x, t)
ṽ(x, t)

)
.

You can check that the pair of equations (23) and (24) may be written as

∂tu+

(
0 ρ0

c20
ρ0

0

)
∂xu = 0 .

This equation is a special case of a general first order system of equations

∂tu+A∂xu = 0 . (25)
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A propagating mode solution with speed s has a shape function φ and a right
eigenvector r. The solution, which builds in the propagation speed s and the
fact that the shape doesn’t change, is

u(x, t) = φ(x− st)r . (26)

We write φ′ for the derivative of φ with respect to its argument. We plug the
wave ansatz (26) into the general system of equations (25) and get

φ′(x− st)− sArφ′(x− st) = 0 .

If φ is not constant, this is possible only if r is a right eigenvector of A with
eigenvalue s

Ar = sr .

The system of eequations (25) is called strongly hyperbolic if A has a full set of
linearly independent eigenvectors with corresponding real eigenvalues. If any of
the eigenvalues of A is not real, or if A has non-trivial Jordan block structure,
then the PDE (25) is “problematic”.

Fortunately, this is not the case for linear acoustics. The eigenvalue problem
is (

0 ρ0

c20
ρ0

0

)(
a
b

)
= s

(
a
b

)
.

The characteristic polynomial is

f(s) = det

(
−s ρ0

c20
ρ0
− s

)
= s2 − c20 .

Setting f(s) = 0 to find eigenvalues gives s± = ±c0 as claimed. The eigenvectors
for s± may be found in the form

r± =

(
1
a±

)
.

The result is

r± =

(
1
s±
ρ0

)
.

These are the traveling wave modes for linear acoustics.
The general solution to the initial value problem is a sum of two traveling

wave solutions, one with speed s+c0 moving to the right and the other with
speed s− = −c0 moving left. The initial data are

u(x, 0) =

(
ρ(x, o)
v(x, 0)

)
.

For any x, we can expand u as a sum of the eivenvectors r±. We call the
expansion coefficients φ±:

u(x, 0) = φ+(x)r+ + φ−(x)r− .

13



The corresponding solution is

u(x, t) = φ+(x− c0t)r+ + φ−(x+ c0t)r− .

From this, we can observe some properties of the general solution:

• Domain of dependence and influence. The solution at (x, t) is de-
termined by the initial data at x − c0t and x + c0t. If these are zero, for
example, the solution at (x, t) is zero. If the initial data is zero for |x| > L,
then the solution is zero for |x| > L+ c0t.

• No smoothing. If the initial data has discontinuities, then the solution
keeps them. Discontinuities propagate along characteristic lines.
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