Numerical Methods I, Fall 2018 Tentative Plan for Lectures, Reading and Homeworks Will be Updated Weekly

#	Date	Topics	Reading	Homework
1	Sept 10	Floating point arithmetic and the IEEE standard, cor-	MO, Ch 1–7	hw1
	~~P *	rectly rounded arithmetic, exceptions (including inf, NaN)		due Sept 18
2	Sept 17	Orthogonal vectors and matrices, vector and matrix	T&B, Lec 1–5 *	hw2
	1	norms, the singular value decomposition (SVD) and low		due Sept 25
		rank approximation, MATLAB's svd		_
3	Sept 24	The QR factorization: projectors, Gram-Schmidt orthog-	T&B, Lec 6–9, *	hw3
		onalization, Legendre polynomials, MATLAB's qr	command-history	due Oct 2
4	Oct 1	Householder trangularization, linear least squares via the	T&B, Lec 10-11	hw4
		normal equations, QR and SVD. Polynomial interpolation		due Oct ${\bf 10}$
		and approximation via the Vandermonde matrix.		
5	TUES	Conditioning and stability	MO, Ch 11–14,	hw5
	Oct 9		T&B, Lec 12–17,	due Oct 16
			[T&B, Lec 18-19]	
6	Oct 15	Gaussian elimination and LU factorization, pivoting for	T&B, Lec 20–22	hw6
		stability, sparse LU factorization, MATLAB's backslash (\backslash)		due Oct 23
7	Oct 22	Symmetric positive definite systems of equations:	T&B, Lec 23,38,40	hw7
		Cholesky factorization, conjugate gradient (CG) method,		due Oct 30
		preconditioning.		
8	Oct 29	Methods for computing eigenvalues: reduction to Hessen-	T&B, Lec 24–27 *	hw8
		berg or tridiagonal form, power iteration, inverse iteration,	[T&B, Lec 28–31]	due Nov 6
	NT -	Rayleigh quotient iteration. Other methods. MATLAB's eig		1 0
9	Nov 5	Nonlinear equations: bisection, fixed-point iteration, New-	D&H, Sec 4.1–4.3	hw9
		ton's method in several variables and its convergence anal-		due Nov 13
10	N 10	ysis, Gauss-Newton method for nonlinear least squares		1 10
10	Nov 12	Optimization: convexity, gradient descent, Newton's	N&W, Ch 1–3.4	hw10 due Nov 20
		method with Hessian modifications when necessary, line		due Nov 20
11	Nov 19	search, Zoutendijk's theorem, convergence rates Polynomial interpolation: existence, uniqueness, er-	S&M, Ch 6	no hw
1 11	1101 19	ror bound, Runge's phenomenon, Hermite interpolation,	runge_demo	IIO IIW
		piecewise cubic interpolation, cubic splines		
12	Nov 26	Chebyshev points and interpolants, Chebfun, Chebyshev	ATAP, Ch 1-5	hw11
	1107 20	polynomials and series, barycentric interpolation formulas	[ATAP, Ch 16]	due Dec 4
13	Dec 3	Numerical integration in one dimension: trapezoidal and	S&M, Ch 7, 10.1–	hw12
	2000	Simpson's rules, order of accuracy, asymptotic error ex-	10.2	due Dec 11
		pansion, Richardson extrapolation, Gauss quadrature	[Six Myths]	
14	Dec 10	Arnoldi, Lanczos, GMRES and CG revisited	[T&B, Lec 32–37]	no hw
15	Dec 17	Final exam	· · · · · · · · · · · · · · · · · · ·	
	-	1	1	1

MO: M.L. Overton, *Numerical Computing with IEEE Floating Point Arithmetic*, SIAM (2004) T&B: Trefethen and Bau, *Numerical Linear Algebra*, SIAM (1997)

D&H: P. Deuflhard and A. Hohmann, Numerical Analysis in Modern Scientific Computing, Springer (2003) N&W: J. Nocedal and S.J. Wright, Nonlinear Optimization, Springer (2006)

S&M: E. Süli and D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press (2003) ATAP: L.N. Trefethen, Approximation Theory and Approximation Practice, SIAM (2013)

Six Myths: L.N. Trefethen, Six Myths of Polynomial Interpolation and Quadrature (Lecture, 2011) * See also these notes

Readings in square brackets [...] are recommended but *not required* for the homeworks or the exam.