Contents

I.	Introduction	2
II.	Fluctuating Dynamic Density Functional Theory with Hydrodynamic Interactions A. Linearized Equations B. Oseen Approximation in Quasi2D	$5 \\ 7 \\ 8$
III.	Brownian dynamics in quasi two-dimensionsA. Force Coupling Method in Quasi2DB. Efficient Two-Dimensional Brownian DynamicsC. Linear response theory	9 10 11 13
IV.	Dynamics of the Ensemble Average A. Ensemble average for density B. Ensemble average for color	$15 \\ 15 \\ 16$
v.	Long-time self diffusion	18
VI.	 Fluctuations in Two-Dimensional Systems A. Equilibrium Fluctuations Structure Factor for Density Dynamic Structure Factor for Color B. Giant Non-equilibrium Fluctuations Density Gradient Color Gradient Nonlinear FHD equations 	$21 \\ 21 \\ 22 \\ 23 \\ 24 \\ 26 \\ 28 \\ 30$
VII.	Conclusions and Discussion A. Summary of Findings B. Future Directions	31 32 33
	Acknowledgments	34
	References	35

I. INTRODUCTION

Diffusion of colloidal particles confined to two-dimensional surfaces is a key transport mechanism in several contexts of technological and biological significance. Colloidal particles can spontaneously absorb on fluid-fluid interfaces and stabilize Pickering emulsions [1]. The transverse diffusion of proteins embedded in lipid bilayers controls their biological function [2]. In man-made colloidal suspensions, colloidal particles can be confined to primarily diffuse in a plane by walls [3] or electrostatic forces [4]. While much is understood about complex fluid-fluid interfaces [1], fundamental questions about diffusive transport at interfaces remain unanswered [5].

Bulk diffusion of particles in liquids is well-known to be controlled by hydrodynamics, and diffusion on interfaces is no exception. While the diffusion of colloids and polymers on a fluid-fluid interface has been studied theoretically since the 1970s [6, 7], collective diffusion in a monolayer of colloidal particles confined to a fluid-fluid interface has only recently been explored in some detail [8–10]. These recent studies have shown that collective diffusion on interfaces is anomalous, with the short-time collective diffusion coefficient diverging as the inverse of the